Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{2}-\sqrt{3}}{\left(2\sqrt{2}+\sqrt{3}\right)\left(2\sqrt{2}-\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{2\sqrt{2}+\sqrt{3}} by multiplying numerator and denominator by 2\sqrt{2}-\sqrt{3}.
\frac{2\sqrt{2}-\sqrt{3}}{\left(2\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2\sqrt{2}+\sqrt{3}\right)\left(2\sqrt{2}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{2}-\sqrt{3}}{2^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{2\sqrt{2}-\sqrt{3}}{4\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{2\sqrt{2}-\sqrt{3}}{4\times 2-\left(\sqrt{3}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{2\sqrt{2}-\sqrt{3}}{8-\left(\sqrt{3}\right)^{2}}
Multiply 4 and 2 to get 8.
\frac{2\sqrt{2}-\sqrt{3}}{8-3}
The square of \sqrt{3} is 3.
\frac{2\sqrt{2}-\sqrt{3}}{5}
Subtract 3 from 8 to get 5.