Solve for C
C = \frac{45}{4} = 11\frac{1}{4} = 11.25
Share
Copied to clipboard
\frac{1}{2\times \frac{1}{2}}-\frac{1}{\left(\frac{1}{4}\right)^{2}}+C=-\frac{15}{4}
Rewrite the square root of the division \frac{1}{4} as the division of square roots \frac{\sqrt{1}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\frac{1}{1}-\frac{1}{\left(\frac{1}{4}\right)^{2}}+C=-\frac{15}{4}
Cancel out 2 and 2.
1-\frac{1}{\left(\frac{1}{4}\right)^{2}}+C=-\frac{15}{4}
Anything divided by one gives itself.
1-\frac{1}{\frac{1}{16}}+C=-\frac{15}{4}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
1-1\times 16+C=-\frac{15}{4}
Divide 1 by \frac{1}{16} by multiplying 1 by the reciprocal of \frac{1}{16}.
1-16+C=-\frac{15}{4}
Multiply 1 and 16 to get 16.
-15+C=-\frac{15}{4}
Subtract 16 from 1 to get -15.
C=-\frac{15}{4}+15
Add 15 to both sides.
C=-\frac{15}{4}+\frac{60}{4}
Convert 15 to fraction \frac{60}{4}.
C=\frac{-15+60}{4}
Since -\frac{15}{4} and \frac{60}{4} have the same denominator, add them by adding their numerators.
C=\frac{45}{4}
Add -15 and 60 to get 45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}