Evaluate
\frac{3}{220}\approx 0.013636364
Factor
\frac{3}{2 ^ {2} \cdot 5 \cdot 11} = 0.013636363636363636
Share
Copied to clipboard
\frac{9}{2\times 9+2}-\frac{1}{\frac{1}{\frac{2\times 9+2}{9}}+\frac{1}{\frac{2\times 7+1}{7}}}\times \frac{2}{5}
Divide 1 by \frac{2\times 9+2}{9} by multiplying 1 by the reciprocal of \frac{2\times 9+2}{9}.
\frac{9}{18+2}-\frac{1}{\frac{1}{\frac{2\times 9+2}{9}}+\frac{1}{\frac{2\times 7+1}{7}}}\times \frac{2}{5}
Multiply 2 and 9 to get 18.
\frac{9}{20}-\frac{1}{\frac{1}{\frac{2\times 9+2}{9}}+\frac{1}{\frac{2\times 7+1}{7}}}\times \frac{2}{5}
Add 18 and 2 to get 20.
\frac{9}{20}-\frac{1}{\frac{9}{2\times 9+2}+\frac{1}{\frac{2\times 7+1}{7}}}\times \frac{2}{5}
Divide 1 by \frac{2\times 9+2}{9} by multiplying 1 by the reciprocal of \frac{2\times 9+2}{9}.
\frac{9}{20}-\frac{1}{\frac{9}{18+2}+\frac{1}{\frac{2\times 7+1}{7}}}\times \frac{2}{5}
Multiply 2 and 9 to get 18.
\frac{9}{20}-\frac{1}{\frac{9}{20}+\frac{1}{\frac{2\times 7+1}{7}}}\times \frac{2}{5}
Add 18 and 2 to get 20.
\frac{9}{20}-\frac{1}{\frac{9}{20}+\frac{7}{2\times 7+1}}\times \frac{2}{5}
Divide 1 by \frac{2\times 7+1}{7} by multiplying 1 by the reciprocal of \frac{2\times 7+1}{7}.
\frac{9}{20}-\frac{1}{\frac{9}{20}+\frac{7}{14+1}}\times \frac{2}{5}
Multiply 2 and 7 to get 14.
\frac{9}{20}-\frac{1}{\frac{9}{20}+\frac{7}{15}}\times \frac{2}{5}
Add 14 and 1 to get 15.
\frac{9}{20}-\frac{1}{\frac{27}{60}+\frac{28}{60}}\times \frac{2}{5}
Least common multiple of 20 and 15 is 60. Convert \frac{9}{20} and \frac{7}{15} to fractions with denominator 60.
\frac{9}{20}-\frac{1}{\frac{27+28}{60}}\times \frac{2}{5}
Since \frac{27}{60} and \frac{28}{60} have the same denominator, add them by adding their numerators.
\frac{9}{20}-\frac{1}{\frac{55}{60}}\times \frac{2}{5}
Add 27 and 28 to get 55.
\frac{9}{20}-\frac{1}{\frac{11}{12}}\times \frac{2}{5}
Reduce the fraction \frac{55}{60} to lowest terms by extracting and canceling out 5.
\frac{9}{20}-1\times \frac{12}{11}\times \frac{2}{5}
Divide 1 by \frac{11}{12} by multiplying 1 by the reciprocal of \frac{11}{12}.
\frac{9}{20}-\frac{12}{11}\times \frac{2}{5}
Multiply 1 and \frac{12}{11} to get \frac{12}{11}.
\frac{9}{20}-\frac{12\times 2}{11\times 5}
Multiply \frac{12}{11} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{20}-\frac{24}{55}
Do the multiplications in the fraction \frac{12\times 2}{11\times 5}.
\frac{99}{220}-\frac{96}{220}
Least common multiple of 20 and 55 is 220. Convert \frac{9}{20} and \frac{24}{55} to fractions with denominator 220.
\frac{99-96}{220}
Since \frac{99}{220} and \frac{96}{220} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{220}
Subtract 96 from 99 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}