Evaluate
\frac{1}{3}\approx 0.333333333
Factor
\frac{1}{3} = 0.3333333333333333
Share
Copied to clipboard
\frac{1}{-1}-\frac{2}{3\left(-\frac{1}{2}\right)}
Cancel out 2 and 2.
-1-\frac{2}{3\left(-\frac{1}{2}\right)}
Divide 1 by -1 to get -1.
-1-\frac{2}{\frac{3\left(-1\right)}{2}}
Express 3\left(-\frac{1}{2}\right) as a single fraction.
-1-\frac{2}{\frac{-3}{2}}
Multiply 3 and -1 to get -3.
-1-\frac{2}{-\frac{3}{2}}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
-1-2\left(-\frac{2}{3}\right)
Divide 2 by -\frac{3}{2} by multiplying 2 by the reciprocal of -\frac{3}{2}.
-1-\frac{2\left(-2\right)}{3}
Express 2\left(-\frac{2}{3}\right) as a single fraction.
-1-\frac{-4}{3}
Multiply 2 and -2 to get -4.
-1-\left(-\frac{4}{3}\right)
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-1+\frac{4}{3}
The opposite of -\frac{4}{3} is \frac{4}{3}.
-\frac{3}{3}+\frac{4}{3}
Convert -1 to fraction -\frac{3}{3}.
\frac{-3+4}{3}
Since -\frac{3}{3} and \frac{4}{3} have the same denominator, add them by adding their numerators.
\frac{1}{3}
Add -3 and 4 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}