Solve for θ
\theta =4
\theta =-\frac{4}{5}=-0.8
Graph
Share
Copied to clipboard
36\theta +72-36=36\left(\theta +2\right)^{2}\times \frac{5}{12}+36\left(\theta +2\right)^{2}\left(-\frac{5}{18}\right)
Variable \theta cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by 36\left(\theta +2\right)^{2}, the least common multiple of 2+\theta ,\left(2+\theta \right)^{2},12,18.
36\theta +36=36\left(\theta +2\right)^{2}\times \frac{5}{12}+36\left(\theta +2\right)^{2}\left(-\frac{5}{18}\right)
Subtract 36 from 72 to get 36.
36\theta +36=36\left(\theta ^{2}+4\theta +4\right)\times \frac{5}{12}+36\left(\theta +2\right)^{2}\left(-\frac{5}{18}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\theta +2\right)^{2}.
36\theta +36=15\left(\theta ^{2}+4\theta +4\right)+36\left(\theta +2\right)^{2}\left(-\frac{5}{18}\right)
Multiply 36 and \frac{5}{12} to get 15.
36\theta +36=15\theta ^{2}+60\theta +60+36\left(\theta +2\right)^{2}\left(-\frac{5}{18}\right)
Use the distributive property to multiply 15 by \theta ^{2}+4\theta +4.
36\theta +36=15\theta ^{2}+60\theta +60+36\left(\theta ^{2}+4\theta +4\right)\left(-\frac{5}{18}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\theta +2\right)^{2}.
36\theta +36=15\theta ^{2}+60\theta +60-10\left(\theta ^{2}+4\theta +4\right)
Multiply 36 and -\frac{5}{18} to get -10.
36\theta +36=15\theta ^{2}+60\theta +60-10\theta ^{2}-40\theta -40
Use the distributive property to multiply -10 by \theta ^{2}+4\theta +4.
36\theta +36=5\theta ^{2}+60\theta +60-40\theta -40
Combine 15\theta ^{2} and -10\theta ^{2} to get 5\theta ^{2}.
36\theta +36=5\theta ^{2}+20\theta +60-40
Combine 60\theta and -40\theta to get 20\theta .
36\theta +36=5\theta ^{2}+20\theta +20
Subtract 40 from 60 to get 20.
36\theta +36-5\theta ^{2}=20\theta +20
Subtract 5\theta ^{2} from both sides.
36\theta +36-5\theta ^{2}-20\theta =20
Subtract 20\theta from both sides.
16\theta +36-5\theta ^{2}=20
Combine 36\theta and -20\theta to get 16\theta .
16\theta +36-5\theta ^{2}-20=0
Subtract 20 from both sides.
16\theta +16-5\theta ^{2}=0
Subtract 20 from 36 to get 16.
-5\theta ^{2}+16\theta +16=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=16 ab=-5\times 16=-80
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -5\theta ^{2}+a\theta +b\theta +16. To find a and b, set up a system to be solved.
-1,80 -2,40 -4,20 -5,16 -8,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -80.
-1+80=79 -2+40=38 -4+20=16 -5+16=11 -8+10=2
Calculate the sum for each pair.
a=20 b=-4
The solution is the pair that gives sum 16.
\left(-5\theta ^{2}+20\theta \right)+\left(-4\theta +16\right)
Rewrite -5\theta ^{2}+16\theta +16 as \left(-5\theta ^{2}+20\theta \right)+\left(-4\theta +16\right).
5\theta \left(-\theta +4\right)+4\left(-\theta +4\right)
Factor out 5\theta in the first and 4 in the second group.
\left(-\theta +4\right)\left(5\theta +4\right)
Factor out common term -\theta +4 by using distributive property.
\theta =4 \theta =-\frac{4}{5}
To find equation solutions, solve -\theta +4=0 and 5\theta +4=0.
36\theta +72-36=36\left(\theta +2\right)^{2}\times \frac{5}{12}+36\left(\theta +2\right)^{2}\left(-\frac{5}{18}\right)
Variable \theta cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by 36\left(\theta +2\right)^{2}, the least common multiple of 2+\theta ,\left(2+\theta \right)^{2},12,18.
36\theta +36=36\left(\theta +2\right)^{2}\times \frac{5}{12}+36\left(\theta +2\right)^{2}\left(-\frac{5}{18}\right)
Subtract 36 from 72 to get 36.
36\theta +36=36\left(\theta ^{2}+4\theta +4\right)\times \frac{5}{12}+36\left(\theta +2\right)^{2}\left(-\frac{5}{18}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\theta +2\right)^{2}.
36\theta +36=15\left(\theta ^{2}+4\theta +4\right)+36\left(\theta +2\right)^{2}\left(-\frac{5}{18}\right)
Multiply 36 and \frac{5}{12} to get 15.
36\theta +36=15\theta ^{2}+60\theta +60+36\left(\theta +2\right)^{2}\left(-\frac{5}{18}\right)
Use the distributive property to multiply 15 by \theta ^{2}+4\theta +4.
36\theta +36=15\theta ^{2}+60\theta +60+36\left(\theta ^{2}+4\theta +4\right)\left(-\frac{5}{18}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\theta +2\right)^{2}.
36\theta +36=15\theta ^{2}+60\theta +60-10\left(\theta ^{2}+4\theta +4\right)
Multiply 36 and -\frac{5}{18} to get -10.
36\theta +36=15\theta ^{2}+60\theta +60-10\theta ^{2}-40\theta -40
Use the distributive property to multiply -10 by \theta ^{2}+4\theta +4.
36\theta +36=5\theta ^{2}+60\theta +60-40\theta -40
Combine 15\theta ^{2} and -10\theta ^{2} to get 5\theta ^{2}.
36\theta +36=5\theta ^{2}+20\theta +60-40
Combine 60\theta and -40\theta to get 20\theta .
36\theta +36=5\theta ^{2}+20\theta +20
Subtract 40 from 60 to get 20.
36\theta +36-5\theta ^{2}=20\theta +20
Subtract 5\theta ^{2} from both sides.
36\theta +36-5\theta ^{2}-20\theta =20
Subtract 20\theta from both sides.
16\theta +36-5\theta ^{2}=20
Combine 36\theta and -20\theta to get 16\theta .
16\theta +36-5\theta ^{2}-20=0
Subtract 20 from both sides.
16\theta +16-5\theta ^{2}=0
Subtract 20 from 36 to get 16.
-5\theta ^{2}+16\theta +16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\theta =\frac{-16±\sqrt{16^{2}-4\left(-5\right)\times 16}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 16 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\theta =\frac{-16±\sqrt{256-4\left(-5\right)\times 16}}{2\left(-5\right)}
Square 16.
\theta =\frac{-16±\sqrt{256+20\times 16}}{2\left(-5\right)}
Multiply -4 times -5.
\theta =\frac{-16±\sqrt{256+320}}{2\left(-5\right)}
Multiply 20 times 16.
\theta =\frac{-16±\sqrt{576}}{2\left(-5\right)}
Add 256 to 320.
\theta =\frac{-16±24}{2\left(-5\right)}
Take the square root of 576.
\theta =\frac{-16±24}{-10}
Multiply 2 times -5.
\theta =\frac{8}{-10}
Now solve the equation \theta =\frac{-16±24}{-10} when ± is plus. Add -16 to 24.
\theta =-\frac{4}{5}
Reduce the fraction \frac{8}{-10} to lowest terms by extracting and canceling out 2.
\theta =-\frac{40}{-10}
Now solve the equation \theta =\frac{-16±24}{-10} when ± is minus. Subtract 24 from -16.
\theta =4
Divide -40 by -10.
\theta =-\frac{4}{5} \theta =4
The equation is now solved.
36\theta +72-36=36\left(\theta +2\right)^{2}\times \frac{5}{12}+36\left(\theta +2\right)^{2}\left(-\frac{5}{18}\right)
Variable \theta cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by 36\left(\theta +2\right)^{2}, the least common multiple of 2+\theta ,\left(2+\theta \right)^{2},12,18.
36\theta +36=36\left(\theta +2\right)^{2}\times \frac{5}{12}+36\left(\theta +2\right)^{2}\left(-\frac{5}{18}\right)
Subtract 36 from 72 to get 36.
36\theta +36=36\left(\theta ^{2}+4\theta +4\right)\times \frac{5}{12}+36\left(\theta +2\right)^{2}\left(-\frac{5}{18}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\theta +2\right)^{2}.
36\theta +36=15\left(\theta ^{2}+4\theta +4\right)+36\left(\theta +2\right)^{2}\left(-\frac{5}{18}\right)
Multiply 36 and \frac{5}{12} to get 15.
36\theta +36=15\theta ^{2}+60\theta +60+36\left(\theta +2\right)^{2}\left(-\frac{5}{18}\right)
Use the distributive property to multiply 15 by \theta ^{2}+4\theta +4.
36\theta +36=15\theta ^{2}+60\theta +60+36\left(\theta ^{2}+4\theta +4\right)\left(-\frac{5}{18}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\theta +2\right)^{2}.
36\theta +36=15\theta ^{2}+60\theta +60-10\left(\theta ^{2}+4\theta +4\right)
Multiply 36 and -\frac{5}{18} to get -10.
36\theta +36=15\theta ^{2}+60\theta +60-10\theta ^{2}-40\theta -40
Use the distributive property to multiply -10 by \theta ^{2}+4\theta +4.
36\theta +36=5\theta ^{2}+60\theta +60-40\theta -40
Combine 15\theta ^{2} and -10\theta ^{2} to get 5\theta ^{2}.
36\theta +36=5\theta ^{2}+20\theta +60-40
Combine 60\theta and -40\theta to get 20\theta .
36\theta +36=5\theta ^{2}+20\theta +20
Subtract 40 from 60 to get 20.
36\theta +36-5\theta ^{2}=20\theta +20
Subtract 5\theta ^{2} from both sides.
36\theta +36-5\theta ^{2}-20\theta =20
Subtract 20\theta from both sides.
16\theta +36-5\theta ^{2}=20
Combine 36\theta and -20\theta to get 16\theta .
16\theta -5\theta ^{2}=20-36
Subtract 36 from both sides.
16\theta -5\theta ^{2}=-16
Subtract 36 from 20 to get -16.
-5\theta ^{2}+16\theta =-16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5\theta ^{2}+16\theta }{-5}=-\frac{16}{-5}
Divide both sides by -5.
\theta ^{2}+\frac{16}{-5}\theta =-\frac{16}{-5}
Dividing by -5 undoes the multiplication by -5.
\theta ^{2}-\frac{16}{5}\theta =-\frac{16}{-5}
Divide 16 by -5.
\theta ^{2}-\frac{16}{5}\theta =\frac{16}{5}
Divide -16 by -5.
\theta ^{2}-\frac{16}{5}\theta +\left(-\frac{8}{5}\right)^{2}=\frac{16}{5}+\left(-\frac{8}{5}\right)^{2}
Divide -\frac{16}{5}, the coefficient of the x term, by 2 to get -\frac{8}{5}. Then add the square of -\frac{8}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\theta ^{2}-\frac{16}{5}\theta +\frac{64}{25}=\frac{16}{5}+\frac{64}{25}
Square -\frac{8}{5} by squaring both the numerator and the denominator of the fraction.
\theta ^{2}-\frac{16}{5}\theta +\frac{64}{25}=\frac{144}{25}
Add \frac{16}{5} to \frac{64}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(\theta -\frac{8}{5}\right)^{2}=\frac{144}{25}
Factor \theta ^{2}-\frac{16}{5}\theta +\frac{64}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\theta -\frac{8}{5}\right)^{2}}=\sqrt{\frac{144}{25}}
Take the square root of both sides of the equation.
\theta -\frac{8}{5}=\frac{12}{5} \theta -\frac{8}{5}=-\frac{12}{5}
Simplify.
\theta =4 \theta =-\frac{4}{5}
Add \frac{8}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}