Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{2-i\sqrt{3}}{\left(2+i\sqrt{3}\right)\left(2-i\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{2+i\sqrt{3}} by multiplying numerator and denominator by 2-i\sqrt{3}.
\frac{2-i\sqrt{3}}{2^{2}-\left(i\sqrt{3}\right)^{2}}
Consider \left(2+i\sqrt{3}\right)\left(2-i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2-i\sqrt{3}}{4-\left(i\sqrt{3}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{2-i\sqrt{3}}{4-i^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(i\sqrt{3}\right)^{2}.
\frac{2-i\sqrt{3}}{4-\left(-\left(\sqrt{3}\right)^{2}\right)}
Calculate i to the power of 2 and get -1.
\frac{2-i\sqrt{3}}{4-\left(-3\right)}
The square of \sqrt{3} is 3.
\frac{2-i\sqrt{3}}{4+3}
Multiply -1 and -3 to get 3.
\frac{2-i\sqrt{3}}{7}
Add 4 and 3 to get 7.