Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}-\frac{2}{\sqrt{3}+\sqrt{5}}+\frac{4}{3-\sqrt{5}}
Rationalize the denominator of \frac{1}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}-\frac{2}{\sqrt{3}+\sqrt{5}}+\frac{4}{3-\sqrt{5}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2-\sqrt{3}}{4-3}-\frac{2}{\sqrt{3}+\sqrt{5}}+\frac{4}{3-\sqrt{5}}
Square 2. Square \sqrt{3}.
\frac{2-\sqrt{3}}{1}-\frac{2}{\sqrt{3}+\sqrt{5}}+\frac{4}{3-\sqrt{5}}
Subtract 3 from 4 to get 1.
2-\sqrt{3}-\frac{2}{\sqrt{3}+\sqrt{5}}+\frac{4}{3-\sqrt{5}}
Anything divided by one gives itself.
2-\sqrt{3}-\frac{2\left(\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right)}+\frac{4}{3-\sqrt{5}}
Rationalize the denominator of \frac{2}{\sqrt{3}+\sqrt{5}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{5}.
2-\sqrt{3}-\frac{2\left(\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}+\frac{4}{3-\sqrt{5}}
Consider \left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2-\sqrt{3}-\frac{2\left(\sqrt{3}-\sqrt{5}\right)}{3-5}+\frac{4}{3-\sqrt{5}}
Square \sqrt{3}. Square \sqrt{5}.
2-\sqrt{3}-\frac{2\left(\sqrt{3}-\sqrt{5}\right)}{-2}+\frac{4}{3-\sqrt{5}}
Subtract 5 from 3 to get -2.
2-\sqrt{3}-\left(-\left(\sqrt{3}-\sqrt{5}\right)\right)+\frac{4}{3-\sqrt{5}}
Cancel out -2 and -2.
2-\sqrt{3}+\sqrt{3}-\sqrt{5}+\frac{4}{3-\sqrt{5}}
The opposite of -\left(\sqrt{3}-\sqrt{5}\right) is \sqrt{3}-\sqrt{5}.
2-\sqrt{5}+\frac{4}{3-\sqrt{5}}
Combine -\sqrt{3} and \sqrt{3} to get 0.
2-\sqrt{5}+\frac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}
Rationalize the denominator of \frac{4}{3-\sqrt{5}} by multiplying numerator and denominator by 3+\sqrt{5}.
2-\sqrt{5}+\frac{4\left(3+\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}
Consider \left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2-\sqrt{5}+\frac{4\left(3+\sqrt{5}\right)}{9-5}
Square 3. Square \sqrt{5}.
2-\sqrt{5}+\frac{4\left(3+\sqrt{5}\right)}{4}
Subtract 5 from 9 to get 4.
2-\sqrt{5}+3+\sqrt{5}
Cancel out 4 and 4.
5-\sqrt{5}+\sqrt{5}
Add 2 and 3 to get 5.
5
Combine -\sqrt{5} and \sqrt{5} to get 0.