Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+|\sin(30)-1|
Rationalize the denominator of \frac{1}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}+|\sin(30)-1|
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2-\sqrt{3}}{4-3}+|\sin(30)-1|
Square 2. Square \sqrt{3}.
\frac{2-\sqrt{3}}{1}+|\sin(30)-1|
Subtract 3 from 4 to get 1.
2-\sqrt{3}+|\sin(30)-1|
Anything divided by one gives itself.
2-\sqrt{3}+|\frac{1}{2}-1|
Get the value of \sin(30) from trigonometric values table.
2-\sqrt{3}+|-\frac{1}{2}|
Subtract 1 from \frac{1}{2} to get -\frac{1}{2}.
2-\sqrt{3}+\frac{1}{2}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of -\frac{1}{2} is \frac{1}{2}.
\frac{5}{2}-\sqrt{3}
Add 2 and \frac{1}{2} to get \frac{5}{2}.