Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{16}x^{2}+\frac{4}{25}\left(1-2x+x^{2}\right)-\frac{2}{5}x\left(1-x\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
\frac{1}{16}x^{2}+\frac{4}{25}-\frac{8}{25}x+\frac{4}{25}x^{2}-\frac{2}{5}x\left(1-x\right)=0
Use the distributive property to multiply \frac{4}{25} by 1-2x+x^{2}.
\frac{89}{400}x^{2}+\frac{4}{25}-\frac{8}{25}x-\frac{2}{5}x\left(1-x\right)=0
Combine \frac{1}{16}x^{2} and \frac{4}{25}x^{2} to get \frac{89}{400}x^{2}.
\frac{89}{400}x^{2}+\frac{4}{25}-\frac{8}{25}x-\frac{2}{5}x+\frac{2}{5}x^{2}=0
Use the distributive property to multiply -\frac{2}{5}x by 1-x.
\frac{89}{400}x^{2}+\frac{4}{25}-\frac{18}{25}x+\frac{2}{5}x^{2}=0
Combine -\frac{8}{25}x and -\frac{2}{5}x to get -\frac{18}{25}x.
\frac{249}{400}x^{2}+\frac{4}{25}-\frac{18}{25}x=0
Combine \frac{89}{400}x^{2} and \frac{2}{5}x^{2} to get \frac{249}{400}x^{2}.
\frac{249}{400}x^{2}-\frac{18}{25}x+\frac{4}{25}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\frac{18}{25}\right)±\sqrt{\left(-\frac{18}{25}\right)^{2}-4\times \frac{249}{400}\times \frac{4}{25}}}{2\times \frac{249}{400}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{249}{400} for a, -\frac{18}{25} for b, and \frac{4}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{18}{25}\right)±\sqrt{\frac{324}{625}-4\times \frac{249}{400}\times \frac{4}{25}}}{2\times \frac{249}{400}}
Square -\frac{18}{25} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{18}{25}\right)±\sqrt{\frac{324}{625}-\frac{249}{100}\times \frac{4}{25}}}{2\times \frac{249}{400}}
Multiply -4 times \frac{249}{400}.
x=\frac{-\left(-\frac{18}{25}\right)±\sqrt{\frac{324-249}{625}}}{2\times \frac{249}{400}}
Multiply -\frac{249}{100} times \frac{4}{25} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{18}{25}\right)±\sqrt{\frac{3}{25}}}{2\times \frac{249}{400}}
Add \frac{324}{625} to -\frac{249}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{18}{25}\right)±\frac{\sqrt{3}}{5}}{2\times \frac{249}{400}}
Take the square root of \frac{3}{25}.
x=\frac{\frac{18}{25}±\frac{\sqrt{3}}{5}}{2\times \frac{249}{400}}
The opposite of -\frac{18}{25} is \frac{18}{25}.
x=\frac{\frac{18}{25}±\frac{\sqrt{3}}{5}}{\frac{249}{200}}
Multiply 2 times \frac{249}{400}.
x=\frac{\frac{\sqrt{3}}{5}+\frac{18}{25}}{\frac{249}{200}}
Now solve the equation x=\frac{\frac{18}{25}±\frac{\sqrt{3}}{5}}{\frac{249}{200}} when ± is plus. Add \frac{18}{25} to \frac{\sqrt{3}}{5}.
x=\frac{40\sqrt{3}}{249}+\frac{48}{83}
Divide \frac{18}{25}+\frac{\sqrt{3}}{5} by \frac{249}{200} by multiplying \frac{18}{25}+\frac{\sqrt{3}}{5} by the reciprocal of \frac{249}{200}.
x=\frac{-\frac{\sqrt{3}}{5}+\frac{18}{25}}{\frac{249}{200}}
Now solve the equation x=\frac{\frac{18}{25}±\frac{\sqrt{3}}{5}}{\frac{249}{200}} when ± is minus. Subtract \frac{\sqrt{3}}{5} from \frac{18}{25}.
x=-\frac{40\sqrt{3}}{249}+\frac{48}{83}
Divide \frac{18}{25}-\frac{\sqrt{3}}{5} by \frac{249}{200} by multiplying \frac{18}{25}-\frac{\sqrt{3}}{5} by the reciprocal of \frac{249}{200}.
x=\frac{40\sqrt{3}}{249}+\frac{48}{83} x=-\frac{40\sqrt{3}}{249}+\frac{48}{83}
The equation is now solved.
\frac{1}{16}x^{2}+\frac{4}{25}\left(1-2x+x^{2}\right)-\frac{2}{5}x\left(1-x\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
\frac{1}{16}x^{2}+\frac{4}{25}-\frac{8}{25}x+\frac{4}{25}x^{2}-\frac{2}{5}x\left(1-x\right)=0
Use the distributive property to multiply \frac{4}{25} by 1-2x+x^{2}.
\frac{89}{400}x^{2}+\frac{4}{25}-\frac{8}{25}x-\frac{2}{5}x\left(1-x\right)=0
Combine \frac{1}{16}x^{2} and \frac{4}{25}x^{2} to get \frac{89}{400}x^{2}.
\frac{89}{400}x^{2}+\frac{4}{25}-\frac{8}{25}x-\frac{2}{5}x+\frac{2}{5}x^{2}=0
Use the distributive property to multiply -\frac{2}{5}x by 1-x.
\frac{89}{400}x^{2}+\frac{4}{25}-\frac{18}{25}x+\frac{2}{5}x^{2}=0
Combine -\frac{8}{25}x and -\frac{2}{5}x to get -\frac{18}{25}x.
\frac{249}{400}x^{2}+\frac{4}{25}-\frac{18}{25}x=0
Combine \frac{89}{400}x^{2} and \frac{2}{5}x^{2} to get \frac{249}{400}x^{2}.
\frac{249}{400}x^{2}-\frac{18}{25}x=-\frac{4}{25}
Subtract \frac{4}{25} from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{249}{400}x^{2}-\frac{18}{25}x}{\frac{249}{400}}=-\frac{\frac{4}{25}}{\frac{249}{400}}
Divide both sides of the equation by \frac{249}{400}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{18}{25}}{\frac{249}{400}}\right)x=-\frac{\frac{4}{25}}{\frac{249}{400}}
Dividing by \frac{249}{400} undoes the multiplication by \frac{249}{400}.
x^{2}-\frac{96}{83}x=-\frac{\frac{4}{25}}{\frac{249}{400}}
Divide -\frac{18}{25} by \frac{249}{400} by multiplying -\frac{18}{25} by the reciprocal of \frac{249}{400}.
x^{2}-\frac{96}{83}x=-\frac{64}{249}
Divide -\frac{4}{25} by \frac{249}{400} by multiplying -\frac{4}{25} by the reciprocal of \frac{249}{400}.
x^{2}-\frac{96}{83}x+\left(-\frac{48}{83}\right)^{2}=-\frac{64}{249}+\left(-\frac{48}{83}\right)^{2}
Divide -\frac{96}{83}, the coefficient of the x term, by 2 to get -\frac{48}{83}. Then add the square of -\frac{48}{83} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{96}{83}x+\frac{2304}{6889}=-\frac{64}{249}+\frac{2304}{6889}
Square -\frac{48}{83} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{96}{83}x+\frac{2304}{6889}=\frac{1600}{20667}
Add -\frac{64}{249} to \frac{2304}{6889} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{48}{83}\right)^{2}=\frac{1600}{20667}
Factor x^{2}-\frac{96}{83}x+\frac{2304}{6889}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{48}{83}\right)^{2}}=\sqrt{\frac{1600}{20667}}
Take the square root of both sides of the equation.
x-\frac{48}{83}=\frac{40\sqrt{3}}{249} x-\frac{48}{83}=-\frac{40\sqrt{3}}{249}
Simplify.
x=\frac{40\sqrt{3}}{249}+\frac{48}{83} x=-\frac{40\sqrt{3}}{249}+\frac{48}{83}
Add \frac{48}{83} to both sides of the equation.