Evaluate
-\frac{4x^{2}}{49}+\frac{1}{16}
Factor
\frac{\left(-8x-7\right)\left(8x-7\right)}{784}
Graph
Share
Copied to clipboard
\frac{49}{784}-\frac{16\times 4x^{2}}{784}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 16 and 49 is 784. Multiply \frac{1}{16} times \frac{49}{49}. Multiply \frac{4x^{2}}{49} times \frac{16}{16}.
\frac{49-16\times 4x^{2}}{784}
Since \frac{49}{784} and \frac{16\times 4x^{2}}{784} have the same denominator, subtract them by subtracting their numerators.
\frac{49-64x^{2}}{784}
Do the multiplications in 49-16\times 4x^{2}.
\frac{49-64x^{2}}{784}
Factor out \frac{1}{784}.
\left(7-8x\right)\left(7+8x\right)
Consider 49-64x^{2}. Rewrite 49-64x^{2} as 7^{2}-\left(8x\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-8x+7\right)\left(8x+7\right)
Reorder the terms.
\frac{\left(-8x+7\right)\left(8x+7\right)}{784}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}