Evaluate
0
Factor
0
Share
Copied to clipboard
\left(\frac{1}{12}a-\frac{1}{16}\right)\left(\frac{4}{3}a+1\right)\left(\frac{16}{9}a^{2}+1\right)+\frac{1}{2}\left(\frac{4}{9}a^{2}+\frac{1}{4}\right)-\left(\frac{4}{9}a^{2}+\frac{1}{4}\right)^{2}
Use the distributive property to multiply \frac{1}{16} by \frac{4}{3}a-1.
\left(\frac{1}{9}a^{2}-\frac{1}{16}\right)\left(\frac{16}{9}a^{2}+1\right)+\frac{1}{2}\left(\frac{4}{9}a^{2}+\frac{1}{4}\right)-\left(\frac{4}{9}a^{2}+\frac{1}{4}\right)^{2}
Use the distributive property to multiply \frac{1}{12}a-\frac{1}{16} by \frac{4}{3}a+1 and combine like terms.
\frac{16}{81}a^{4}-\frac{1}{16}+\frac{1}{2}\left(\frac{4}{9}a^{2}+\frac{1}{4}\right)-\left(\frac{4}{9}a^{2}+\frac{1}{4}\right)^{2}
Use the distributive property to multiply \frac{1}{9}a^{2}-\frac{1}{16} by \frac{16}{9}a^{2}+1 and combine like terms.
\frac{16}{81}a^{4}-\frac{1}{16}+\frac{2}{9}a^{2}+\frac{1}{8}-\left(\frac{4}{9}a^{2}+\frac{1}{4}\right)^{2}
Use the distributive property to multiply \frac{1}{2} by \frac{4}{9}a^{2}+\frac{1}{4}.
\frac{16}{81}a^{4}+\frac{1}{16}+\frac{2}{9}a^{2}-\left(\frac{4}{9}a^{2}+\frac{1}{4}\right)^{2}
Add -\frac{1}{16} and \frac{1}{8} to get \frac{1}{16}.
\frac{16}{81}a^{4}+\frac{1}{16}+\frac{2}{9}a^{2}-\left(\frac{16}{81}\left(a^{2}\right)^{2}+\frac{2}{9}a^{2}+\frac{1}{16}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(\frac{4}{9}a^{2}+\frac{1}{4}\right)^{2}.
\frac{16}{81}a^{4}+\frac{1}{16}+\frac{2}{9}a^{2}-\left(\frac{16}{81}a^{4}+\frac{2}{9}a^{2}+\frac{1}{16}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{16}{81}a^{4}+\frac{1}{16}+\frac{2}{9}a^{2}-\frac{16}{81}a^{4}-\frac{2}{9}a^{2}-\frac{1}{16}
To find the opposite of \frac{16}{81}a^{4}+\frac{2}{9}a^{2}+\frac{1}{16}, find the opposite of each term.
\frac{1}{16}+\frac{2}{9}a^{2}-\frac{2}{9}a^{2}-\frac{1}{16}
Combine \frac{16}{81}a^{4} and -\frac{16}{81}a^{4} to get 0.
\frac{1}{16}-\frac{1}{16}
Combine \frac{2}{9}a^{2} and -\frac{2}{9}a^{2} to get 0.
0
Subtract \frac{1}{16} from \frac{1}{16} to get 0.
\left(16a^{2}+9\right)\left(-\frac{1}{144}+\frac{1}{81}a^{2}+\frac{1}{72}-\frac{1}{144}-\frac{1}{81}a^{2}\right)
Factor out common term 16a^{2}+9 by using distributive property.
0
Consider -\frac{1}{144}+\frac{1}{81}a^{2}+\frac{1}{72}-\frac{1}{144}-\frac{1}{81}a^{2}. Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}