Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{12}a-\frac{1}{16}\right)\left(\frac{4}{3}a+1\right)\left(\frac{16}{9}a^{2}+1\right)+\frac{1}{2}\left(\frac{4}{9}a^{2}+\frac{1}{4}\right)-\left(\frac{4}{9}a^{2}+\frac{1}{4}\right)^{2}
Use the distributive property to multiply \frac{1}{16} by \frac{4}{3}a-1.
\left(\frac{1}{9}a^{2}-\frac{1}{16}\right)\left(\frac{16}{9}a^{2}+1\right)+\frac{1}{2}\left(\frac{4}{9}a^{2}+\frac{1}{4}\right)-\left(\frac{4}{9}a^{2}+\frac{1}{4}\right)^{2}
Use the distributive property to multiply \frac{1}{12}a-\frac{1}{16} by \frac{4}{3}a+1 and combine like terms.
\frac{16}{81}a^{4}-\frac{1}{16}+\frac{1}{2}\left(\frac{4}{9}a^{2}+\frac{1}{4}\right)-\left(\frac{4}{9}a^{2}+\frac{1}{4}\right)^{2}
Use the distributive property to multiply \frac{1}{9}a^{2}-\frac{1}{16} by \frac{16}{9}a^{2}+1 and combine like terms.
\frac{16}{81}a^{4}-\frac{1}{16}+\frac{2}{9}a^{2}+\frac{1}{8}-\left(\frac{4}{9}a^{2}+\frac{1}{4}\right)^{2}
Use the distributive property to multiply \frac{1}{2} by \frac{4}{9}a^{2}+\frac{1}{4}.
\frac{16}{81}a^{4}+\frac{1}{16}+\frac{2}{9}a^{2}-\left(\frac{4}{9}a^{2}+\frac{1}{4}\right)^{2}
Add -\frac{1}{16} and \frac{1}{8} to get \frac{1}{16}.
\frac{16}{81}a^{4}+\frac{1}{16}+\frac{2}{9}a^{2}-\left(\frac{16}{81}\left(a^{2}\right)^{2}+\frac{2}{9}a^{2}+\frac{1}{16}\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(\frac{4}{9}a^{2}+\frac{1}{4}\right)^{2}.
\frac{16}{81}a^{4}+\frac{1}{16}+\frac{2}{9}a^{2}-\left(\frac{16}{81}a^{4}+\frac{2}{9}a^{2}+\frac{1}{16}\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{16}{81}a^{4}+\frac{1}{16}+\frac{2}{9}a^{2}-\frac{16}{81}a^{4}-\frac{2}{9}a^{2}-\frac{1}{16}
To find the opposite of \frac{16}{81}a^{4}+\frac{2}{9}a^{2}+\frac{1}{16}, find the opposite of each term.
\frac{1}{16}+\frac{2}{9}a^{2}-\frac{2}{9}a^{2}-\frac{1}{16}
Combine \frac{16}{81}a^{4} and -\frac{16}{81}a^{4} to get 0.
\frac{1}{16}-\frac{1}{16}
Combine \frac{2}{9}a^{2} and -\frac{2}{9}a^{2} to get 0.
0
Subtract \frac{1}{16} from \frac{1}{16} to get 0.
\left(16a^{2}+9\right)\left(-\frac{1}{144}+\frac{1}{81}a^{2}+\frac{1}{72}-\frac{1}{144}-\frac{1}{81}a^{2}\right)
Factor out common term 16a^{2}+9 by using distributive property.
0
Consider -\frac{1}{144}+\frac{1}{81}a^{2}+\frac{1}{72}-\frac{1}{144}-\frac{1}{81}a^{2}. Simplify.