Solve for t
t=45
Share
Copied to clipboard
\frac{1}{15}t-\left(-\frac{1}{5}t\right)-12=0
To find the opposite of -\frac{1}{5}t+12, find the opposite of each term.
\frac{1}{15}t+\frac{1}{5}t-12=0
The opposite of -\frac{1}{5}t is \frac{1}{5}t.
\frac{4}{15}t-12=0
Combine \frac{1}{15}t and \frac{1}{5}t to get \frac{4}{15}t.
\frac{4}{15}t=12
Add 12 to both sides. Anything plus zero gives itself.
t=12\times \frac{15}{4}
Multiply both sides by \frac{15}{4}, the reciprocal of \frac{4}{15}.
t=\frac{12\times 15}{4}
Express 12\times \frac{15}{4} as a single fraction.
t=\frac{180}{4}
Multiply 12 and 15 to get 180.
t=45
Divide 180 by 4 to get 45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}