Solve for x
x=\frac{75}{596}\approx 0.125838926
Graph
Share
Copied to clipboard
120x\times \frac{1}{15}+2\times 15\times 5=1200x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 120x, the least common multiple of 15,8x.
8x+2\times 15\times 5=1200x
Multiply 120 and \frac{1}{15} to get 8.
8x+30\times 5=1200x
Multiply 2 and 15 to get 30.
8x+150=1200x
Multiply 30 and 5 to get 150.
8x+150-1200x=0
Subtract 1200x from both sides.
-1192x+150=0
Combine 8x and -1200x to get -1192x.
-1192x=-150
Subtract 150 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-150}{-1192}
Divide both sides by -1192.
x=\frac{75}{596}
Reduce the fraction \frac{-150}{-1192} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}