Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{13-2\sqrt{42}}
Factor 168=2^{2}\times 42. Rewrite the square root of the product \sqrt{2^{2}\times 42} as the product of square roots \sqrt{2^{2}}\sqrt{42}. Take the square root of 2^{2}.
\frac{13+2\sqrt{42}}{\left(13-2\sqrt{42}\right)\left(13+2\sqrt{42}\right)}
Rationalize the denominator of \frac{1}{13-2\sqrt{42}} by multiplying numerator and denominator by 13+2\sqrt{42}.
\frac{13+2\sqrt{42}}{13^{2}-\left(-2\sqrt{42}\right)^{2}}
Consider \left(13-2\sqrt{42}\right)\left(13+2\sqrt{42}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{13+2\sqrt{42}}{169-\left(-2\sqrt{42}\right)^{2}}
Calculate 13 to the power of 2 and get 169.
\frac{13+2\sqrt{42}}{169-\left(-2\right)^{2}\left(\sqrt{42}\right)^{2}}
Expand \left(-2\sqrt{42}\right)^{2}.
\frac{13+2\sqrt{42}}{169-4\left(\sqrt{42}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{13+2\sqrt{42}}{169-4\times 42}
The square of \sqrt{42} is 42.
\frac{13+2\sqrt{42}}{169-168}
Multiply 4 and 42 to get 168.
\frac{13+2\sqrt{42}}{1}
Subtract 168 from 169 to get 1.
13+2\sqrt{42}
Anything divided by one gives itself.