Evaluate
2\sqrt{42}+13\approx 25.961481397
Share
Copied to clipboard
\frac{1}{13-2\sqrt{42}}
Factor 168=2^{2}\times 42. Rewrite the square root of the product \sqrt{2^{2}\times 42} as the product of square roots \sqrt{2^{2}}\sqrt{42}. Take the square root of 2^{2}.
\frac{13+2\sqrt{42}}{\left(13-2\sqrt{42}\right)\left(13+2\sqrt{42}\right)}
Rationalize the denominator of \frac{1}{13-2\sqrt{42}} by multiplying numerator and denominator by 13+2\sqrt{42}.
\frac{13+2\sqrt{42}}{13^{2}-\left(-2\sqrt{42}\right)^{2}}
Consider \left(13-2\sqrt{42}\right)\left(13+2\sqrt{42}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{13+2\sqrt{42}}{169-\left(-2\sqrt{42}\right)^{2}}
Calculate 13 to the power of 2 and get 169.
\frac{13+2\sqrt{42}}{169-\left(-2\right)^{2}\left(\sqrt{42}\right)^{2}}
Expand \left(-2\sqrt{42}\right)^{2}.
\frac{13+2\sqrt{42}}{169-4\left(\sqrt{42}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{13+2\sqrt{42}}{169-4\times 42}
The square of \sqrt{42} is 42.
\frac{13+2\sqrt{42}}{169-168}
Multiply 4 and 42 to get 168.
\frac{13+2\sqrt{42}}{1}
Subtract 168 from 169 to get 1.
13+2\sqrt{42}
Anything divided by one gives itself.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}