Evaluate
-\frac{9}{20}=-0.45
Factor
-\frac{9}{20} = -0.45
Share
Copied to clipboard
\frac{1-5}{12}-\frac{6}{15}-\frac{1\times 20+9}{20}+\frac{1\times 15+11}{15}
Since \frac{1}{12} and \frac{5}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{-4}{12}-\frac{6}{15}-\frac{1\times 20+9}{20}+\frac{1\times 15+11}{15}
Subtract 5 from 1 to get -4.
-\frac{1}{3}-\frac{6}{15}-\frac{1\times 20+9}{20}+\frac{1\times 15+11}{15}
Reduce the fraction \frac{-4}{12} to lowest terms by extracting and canceling out 4.
-\frac{1}{3}-\frac{2}{5}-\frac{1\times 20+9}{20}+\frac{1\times 15+11}{15}
Reduce the fraction \frac{6}{15} to lowest terms by extracting and canceling out 3.
-\frac{5}{15}-\frac{6}{15}-\frac{1\times 20+9}{20}+\frac{1\times 15+11}{15}
Least common multiple of 3 and 5 is 15. Convert -\frac{1}{3} and \frac{2}{5} to fractions with denominator 15.
\frac{-5-6}{15}-\frac{1\times 20+9}{20}+\frac{1\times 15+11}{15}
Since -\frac{5}{15} and \frac{6}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{11}{15}-\frac{1\times 20+9}{20}+\frac{1\times 15+11}{15}
Subtract 6 from -5 to get -11.
-\frac{11}{15}-\frac{20+9}{20}+\frac{1\times 15+11}{15}
Multiply 1 and 20 to get 20.
-\frac{11}{15}-\frac{29}{20}+\frac{1\times 15+11}{15}
Add 20 and 9 to get 29.
-\frac{44}{60}-\frac{87}{60}+\frac{1\times 15+11}{15}
Least common multiple of 15 and 20 is 60. Convert -\frac{11}{15} and \frac{29}{20} to fractions with denominator 60.
\frac{-44-87}{60}+\frac{1\times 15+11}{15}
Since -\frac{44}{60} and \frac{87}{60} have the same denominator, subtract them by subtracting their numerators.
-\frac{131}{60}+\frac{1\times 15+11}{15}
Subtract 87 from -44 to get -131.
-\frac{131}{60}+\frac{15+11}{15}
Multiply 1 and 15 to get 15.
-\frac{131}{60}+\frac{26}{15}
Add 15 and 11 to get 26.
-\frac{131}{60}+\frac{104}{60}
Least common multiple of 60 and 15 is 60. Convert -\frac{131}{60} and \frac{26}{15} to fractions with denominator 60.
\frac{-131+104}{60}
Since -\frac{131}{60} and \frac{104}{60} have the same denominator, add them by adding their numerators.
\frac{-27}{60}
Add -131 and 104 to get -27.
-\frac{9}{20}
Reduce the fraction \frac{-27}{60} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}