Evaluate
\frac{25}{12}\approx 2.083333333
Factor
\frac{5 ^ {2}}{3 \cdot 2 ^ {2}} = 2\frac{1}{12} = 2.0833333333333335
Share
Copied to clipboard
\frac{1}{12}+\frac{\frac{48+5}{12}-3.5}{\frac{11}{24}}
Multiply 4 and 12 to get 48.
\frac{1}{12}+\frac{\frac{53}{12}-3.5}{\frac{11}{24}}
Add 48 and 5 to get 53.
\frac{1}{12}+\frac{\frac{53}{12}-\frac{7}{2}}{\frac{11}{24}}
Convert decimal number 3.5 to fraction \frac{35}{10}. Reduce the fraction \frac{35}{10} to lowest terms by extracting and canceling out 5.
\frac{1}{12}+\frac{\frac{53}{12}-\frac{42}{12}}{\frac{11}{24}}
Least common multiple of 12 and 2 is 12. Convert \frac{53}{12} and \frac{7}{2} to fractions with denominator 12.
\frac{1}{12}+\frac{\frac{53-42}{12}}{\frac{11}{24}}
Since \frac{53}{12} and \frac{42}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{12}+\frac{\frac{11}{12}}{\frac{11}{24}}
Subtract 42 from 53 to get 11.
\frac{1}{12}+\frac{11}{12}\times \frac{24}{11}
Divide \frac{11}{12} by \frac{11}{24} by multiplying \frac{11}{12} by the reciprocal of \frac{11}{24}.
\frac{1}{12}+\frac{11\times 24}{12\times 11}
Multiply \frac{11}{12} times \frac{24}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{12}+\frac{24}{12}
Cancel out 11 in both numerator and denominator.
\frac{1+24}{12}
Since \frac{1}{12} and \frac{24}{12} have the same denominator, add them by adding their numerators.
\frac{25}{12}
Add 1 and 24 to get 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}