Evaluate
\frac{133}{60}\approx 2.216666667
Factor
\frac{7 \cdot 19}{2 ^ {2} \cdot 3 \cdot 5} = 2\frac{13}{60} = 2.216666666666667
Share
Copied to clipboard
\frac{1}{12}+\frac{\frac{1}{5}\times \frac{2-1}{3}+\frac{4}{5}}{\frac{3}{7}}+\frac{1}{9}
Since \frac{2}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{12}+\frac{\frac{1}{5}\times \frac{1}{3}+\frac{4}{5}}{\frac{3}{7}}+\frac{1}{9}
Subtract 1 from 2 to get 1.
\frac{1}{12}+\frac{\frac{1\times 1}{5\times 3}+\frac{4}{5}}{\frac{3}{7}}+\frac{1}{9}
Multiply \frac{1}{5} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{12}+\frac{\frac{1}{15}+\frac{4}{5}}{\frac{3}{7}}+\frac{1}{9}
Do the multiplications in the fraction \frac{1\times 1}{5\times 3}.
\frac{1}{12}+\frac{\frac{1}{15}+\frac{12}{15}}{\frac{3}{7}}+\frac{1}{9}
Least common multiple of 15 and 5 is 15. Convert \frac{1}{15} and \frac{4}{5} to fractions with denominator 15.
\frac{1}{12}+\frac{\frac{1+12}{15}}{\frac{3}{7}}+\frac{1}{9}
Since \frac{1}{15} and \frac{12}{15} have the same denominator, add them by adding their numerators.
\frac{1}{12}+\frac{\frac{13}{15}}{\frac{3}{7}}+\frac{1}{9}
Add 1 and 12 to get 13.
\frac{1}{12}+\frac{13}{15}\times \frac{7}{3}+\frac{1}{9}
Divide \frac{13}{15} by \frac{3}{7} by multiplying \frac{13}{15} by the reciprocal of \frac{3}{7}.
\frac{1}{12}+\frac{13\times 7}{15\times 3}+\frac{1}{9}
Multiply \frac{13}{15} times \frac{7}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{12}+\frac{91}{45}+\frac{1}{9}
Do the multiplications in the fraction \frac{13\times 7}{15\times 3}.
\frac{15}{180}+\frac{364}{180}+\frac{1}{9}
Least common multiple of 12 and 45 is 180. Convert \frac{1}{12} and \frac{91}{45} to fractions with denominator 180.
\frac{15+364}{180}+\frac{1}{9}
Since \frac{15}{180} and \frac{364}{180} have the same denominator, add them by adding their numerators.
\frac{379}{180}+\frac{1}{9}
Add 15 and 364 to get 379.
\frac{379}{180}+\frac{20}{180}
Least common multiple of 180 and 9 is 180. Convert \frac{379}{180} and \frac{1}{9} to fractions with denominator 180.
\frac{379+20}{180}
Since \frac{379}{180} and \frac{20}{180} have the same denominator, add them by adding their numerators.
\frac{399}{180}
Add 379 and 20 to get 399.
\frac{133}{60}
Reduce the fraction \frac{399}{180} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}