Solve for q
q=\frac{210}{21r-20}
r\neq \frac{20}{21}
Solve for r
r=\frac{20}{21}+\frac{10}{q}
q\neq 0
Quiz
Linear Equation
5 problems similar to:
\frac { 1 } { 10.5 } + \frac { 1 } { q } = \frac { r } { 10 }
Share
Copied to clipboard
10q\times \frac{1}{10.5}+10=qr
Variable q cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 10q, the least common multiple of q,10.
10q\times \frac{10}{105}+10=qr
Expand \frac{1}{10.5} by multiplying both numerator and the denominator by 10.
10q\times \frac{2}{21}+10=qr
Reduce the fraction \frac{10}{105} to lowest terms by extracting and canceling out 5.
\frac{20}{21}q+10=qr
Multiply 10 and \frac{2}{21} to get \frac{20}{21}.
\frac{20}{21}q+10-qr=0
Subtract qr from both sides.
\frac{20}{21}q-qr=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
\left(\frac{20}{21}-r\right)q=-10
Combine all terms containing q.
\frac{\left(\frac{20}{21}-r\right)q}{\frac{20}{21}-r}=-\frac{10}{\frac{20}{21}-r}
Divide both sides by \frac{20}{21}-r.
q=-\frac{10}{\frac{20}{21}-r}
Dividing by \frac{20}{21}-r undoes the multiplication by \frac{20}{21}-r.
q=-\frac{210}{20-21r}
Divide -10 by \frac{20}{21}-r.
q=-\frac{210}{20-21r}\text{, }q\neq 0
Variable q cannot be equal to 0.
10q\times \frac{1}{10.5}+10=qr
Multiply both sides of the equation by 10q, the least common multiple of q,10.
10q\times \frac{10}{105}+10=qr
Expand \frac{1}{10.5} by multiplying both numerator and the denominator by 10.
10q\times \frac{2}{21}+10=qr
Reduce the fraction \frac{10}{105} to lowest terms by extracting and canceling out 5.
\frac{20}{21}q+10=qr
Multiply 10 and \frac{2}{21} to get \frac{20}{21}.
qr=\frac{20}{21}q+10
Swap sides so that all variable terms are on the left hand side.
qr=\frac{20q}{21}+10
The equation is in standard form.
\frac{qr}{q}=\frac{\frac{20q}{21}+10}{q}
Divide both sides by q.
r=\frac{\frac{20q}{21}+10}{q}
Dividing by q undoes the multiplication by q.
r=\frac{20}{21}+\frac{10}{q}
Divide \frac{20q}{21}+10 by q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}