Evaluate
\frac{127}{42}\approx 3.023809524
Factor
\frac{127}{2 \cdot 3 \cdot 7} = 3\frac{1}{42} = 3.0238095238095237
Share
Copied to clipboard
\frac{1}{10}-\left(-3\left(\frac{2}{7}+\frac{9}{5}\right)+\frac{10}{3}\right)
The opposite of -\frac{9}{5} is \frac{9}{5}.
\frac{1}{10}-\left(-3\left(\frac{10}{35}+\frac{63}{35}\right)+\frac{10}{3}\right)
Least common multiple of 7 and 5 is 35. Convert \frac{2}{7} and \frac{9}{5} to fractions with denominator 35.
\frac{1}{10}-\left(-3\times \frac{10+63}{35}+\frac{10}{3}\right)
Since \frac{10}{35} and \frac{63}{35} have the same denominator, add them by adding their numerators.
\frac{1}{10}-\left(-3\times \frac{73}{35}+\frac{10}{3}\right)
Add 10 and 63 to get 73.
\frac{1}{10}-\left(\frac{-3\times 73}{35}+\frac{10}{3}\right)
Express -3\times \frac{73}{35} as a single fraction.
\frac{1}{10}-\left(\frac{-219}{35}+\frac{10}{3}\right)
Multiply -3 and 73 to get -219.
\frac{1}{10}-\left(-\frac{219}{35}+\frac{10}{3}\right)
Fraction \frac{-219}{35} can be rewritten as -\frac{219}{35} by extracting the negative sign.
\frac{1}{10}-\left(-\frac{657}{105}+\frac{350}{105}\right)
Least common multiple of 35 and 3 is 105. Convert -\frac{219}{35} and \frac{10}{3} to fractions with denominator 105.
\frac{1}{10}-\frac{-657+350}{105}
Since -\frac{657}{105} and \frac{350}{105} have the same denominator, add them by adding their numerators.
\frac{1}{10}-\left(-\frac{307}{105}\right)
Add -657 and 350 to get -307.
\frac{1}{10}+\frac{307}{105}
The opposite of -\frac{307}{105} is \frac{307}{105}.
\frac{21}{210}+\frac{614}{210}
Least common multiple of 10 and 105 is 210. Convert \frac{1}{10} and \frac{307}{105} to fractions with denominator 210.
\frac{21+614}{210}
Since \frac{21}{210} and \frac{614}{210} have the same denominator, add them by adding their numerators.
\frac{635}{210}
Add 21 and 614 to get 635.
\frac{127}{42}
Reduce the fraction \frac{635}{210} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}