Evaluate
-\frac{11p}{5}+\frac{1}{2}
Expand
-\frac{11p}{5}+\frac{1}{2}
Share
Copied to clipboard
\frac{1}{10}\times 5p+\frac{1}{10}\left(-1\right)-\frac{5}{2}p-\frac{p-3}{5}
Use the distributive property to multiply \frac{1}{10} by 5p-1.
\frac{5}{10}p+\frac{1}{10}\left(-1\right)-\frac{5}{2}p-\frac{p-3}{5}
Multiply \frac{1}{10} and 5 to get \frac{5}{10}.
\frac{1}{2}p+\frac{1}{10}\left(-1\right)-\frac{5}{2}p-\frac{p-3}{5}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{1}{2}p-\frac{1}{10}-\frac{5}{2}p-\frac{p-3}{5}
Multiply \frac{1}{10} and -1 to get -\frac{1}{10}.
-2p-\frac{1}{10}-\frac{p-3}{5}
Combine \frac{1}{2}p and -\frac{5}{2}p to get -2p.
-2p-\frac{1}{10}-\frac{2\left(p-3\right)}{10}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 10 and 5 is 10. Multiply \frac{p-3}{5} times \frac{2}{2}.
-2p+\frac{-1-2\left(p-3\right)}{10}
Since -\frac{1}{10} and \frac{2\left(p-3\right)}{10} have the same denominator, subtract them by subtracting their numerators.
-2p+\frac{-1-2p+6}{10}
Do the multiplications in -1-2\left(p-3\right).
-2p+\frac{5-2p}{10}
Combine like terms in -1-2p+6.
\frac{10\left(-2\right)p}{10}+\frac{5-2p}{10}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2p times \frac{10}{10}.
\frac{10\left(-2\right)p+5-2p}{10}
Since \frac{10\left(-2\right)p}{10} and \frac{5-2p}{10} have the same denominator, add them by adding their numerators.
\frac{-20p+5-2p}{10}
Do the multiplications in 10\left(-2\right)p+5-2p.
\frac{-22p+5}{10}
Combine like terms in -20p+5-2p.
\frac{1}{10}\times 5p+\frac{1}{10}\left(-1\right)-\frac{5}{2}p-\frac{p-3}{5}
Use the distributive property to multiply \frac{1}{10} by 5p-1.
\frac{5}{10}p+\frac{1}{10}\left(-1\right)-\frac{5}{2}p-\frac{p-3}{5}
Multiply \frac{1}{10} and 5 to get \frac{5}{10}.
\frac{1}{2}p+\frac{1}{10}\left(-1\right)-\frac{5}{2}p-\frac{p-3}{5}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{1}{2}p-\frac{1}{10}-\frac{5}{2}p-\frac{p-3}{5}
Multiply \frac{1}{10} and -1 to get -\frac{1}{10}.
-2p-\frac{1}{10}-\frac{p-3}{5}
Combine \frac{1}{2}p and -\frac{5}{2}p to get -2p.
-2p-\frac{1}{10}-\frac{2\left(p-3\right)}{10}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 10 and 5 is 10. Multiply \frac{p-3}{5} times \frac{2}{2}.
-2p+\frac{-1-2\left(p-3\right)}{10}
Since -\frac{1}{10} and \frac{2\left(p-3\right)}{10} have the same denominator, subtract them by subtracting their numerators.
-2p+\frac{-1-2p+6}{10}
Do the multiplications in -1-2\left(p-3\right).
-2p+\frac{5-2p}{10}
Combine like terms in -1-2p+6.
\frac{10\left(-2\right)p}{10}+\frac{5-2p}{10}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2p times \frac{10}{10}.
\frac{10\left(-2\right)p+5-2p}{10}
Since \frac{10\left(-2\right)p}{10} and \frac{5-2p}{10} have the same denominator, add them by adding their numerators.
\frac{-20p+5-2p}{10}
Do the multiplications in 10\left(-2\right)p+5-2p.
\frac{-22p+5}{10}
Combine like terms in -20p+5-2p.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}