Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}-\frac{1}{12}
Multiply both numerator and denominator of \frac{1}{1-i} by the complex conjugate of the denominator, 1+i.
\frac{1\left(1+i\right)}{1^{2}-i^{2}}-\frac{1}{12}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(1+i\right)}{2}-\frac{1}{12}
By definition, i^{2} is -1. Calculate the denominator.
\frac{1+i}{2}-\frac{1}{12}
Multiply 1 and 1+i to get 1+i.
\frac{1}{2}+\frac{1}{2}i-\frac{1}{12}
Divide 1+i by 2 to get \frac{1}{2}+\frac{1}{2}i.
\frac{1}{2}-\frac{1}{12}+\frac{1}{2}i
Subtract \frac{1}{12} from \frac{1}{2}+\frac{1}{2}i by subtracting corresponding real and imaginary parts.
\frac{5}{12}+\frac{1}{2}i
Subtract \frac{1}{12} from \frac{1}{2} to get \frac{5}{12}.
Re(\frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}-\frac{1}{12})
Multiply both numerator and denominator of \frac{1}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{1\left(1+i\right)}{1^{2}-i^{2}}-\frac{1}{12})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(1+i\right)}{2}-\frac{1}{12})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{1+i}{2}-\frac{1}{12})
Multiply 1 and 1+i to get 1+i.
Re(\frac{1}{2}+\frac{1}{2}i-\frac{1}{12})
Divide 1+i by 2 to get \frac{1}{2}+\frac{1}{2}i.
Re(\frac{1}{2}-\frac{1}{12}+\frac{1}{2}i)
Subtract \frac{1}{12} from \frac{1}{2}+\frac{1}{2}i by subtracting corresponding real and imaginary parts.
Re(\frac{5}{12}+\frac{1}{2}i)
Subtract \frac{1}{12} from \frac{1}{2} to get \frac{5}{12}.
\frac{5}{12}
The real part of \frac{5}{12}+\frac{1}{2}i is \frac{5}{12}.