Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}+\frac{1}{2+3i}
Multiply both numerator and denominator of \frac{1}{1-i} by the complex conjugate of the denominator, 1+i.
\frac{1+i}{2}+\frac{1}{2+3i}
Do the multiplications in \frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
\frac{1}{2}+\frac{1}{2}i+\frac{1}{2+3i}
Divide 1+i by 2 to get \frac{1}{2}+\frac{1}{2}i.
\frac{1}{2}+\frac{1}{2}i+\frac{1\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)}
Multiply both numerator and denominator of \frac{1}{2+3i} by the complex conjugate of the denominator, 2-3i.
\frac{1}{2}+\frac{1}{2}i+\frac{2-3i}{13}
Do the multiplications in \frac{1\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)}.
\frac{1}{2}+\frac{1}{2}i+\left(\frac{2}{13}-\frac{3}{13}i\right)
Divide 2-3i by 13 to get \frac{2}{13}-\frac{3}{13}i.
\frac{17}{26}+\frac{7}{26}i
Add \frac{1}{2}+\frac{1}{2}i and \frac{2}{13}-\frac{3}{13}i to get \frac{17}{26}+\frac{7}{26}i.
Re(\frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}+\frac{1}{2+3i})
Multiply both numerator and denominator of \frac{1}{1-i} by the complex conjugate of the denominator, 1+i.
Re(\frac{1+i}{2}+\frac{1}{2+3i})
Do the multiplications in \frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}.
Re(\frac{1}{2}+\frac{1}{2}i+\frac{1}{2+3i})
Divide 1+i by 2 to get \frac{1}{2}+\frac{1}{2}i.
Re(\frac{1}{2}+\frac{1}{2}i+\frac{1\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)})
Multiply both numerator and denominator of \frac{1}{2+3i} by the complex conjugate of the denominator, 2-3i.
Re(\frac{1}{2}+\frac{1}{2}i+\frac{2-3i}{13})
Do the multiplications in \frac{1\left(2-3i\right)}{\left(2+3i\right)\left(2-3i\right)}.
Re(\frac{1}{2}+\frac{1}{2}i+\left(\frac{2}{13}-\frac{3}{13}i\right))
Divide 2-3i by 13 to get \frac{2}{13}-\frac{3}{13}i.
Re(\frac{17}{26}+\frac{7}{26}i)
Add \frac{1}{2}+\frac{1}{2}i and \frac{2}{13}-\frac{3}{13}i to get \frac{17}{26}+\frac{7}{26}i.
\frac{17}{26}
The real part of \frac{17}{26}+\frac{7}{26}i is \frac{17}{26}.