Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{\left(-3x-1\right)\left(3x-1\right)}-\frac{x+2}{\left(x-5\right)\left(3x-1\right)}
Factor 1-9x^{2}. Factor 3x^{2}-16x+5.
\frac{x-5}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)}-\frac{\left(x+2\right)\left(-3x-1\right)}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(-3x-1\right)\left(3x-1\right) and \left(x-5\right)\left(3x-1\right) is \left(x-5\right)\left(-3x-1\right)\left(3x-1\right). Multiply \frac{1}{\left(-3x-1\right)\left(3x-1\right)} times \frac{x-5}{x-5}. Multiply \frac{x+2}{\left(x-5\right)\left(3x-1\right)} times \frac{-3x-1}{-3x-1}.
\frac{x-5-\left(x+2\right)\left(-3x-1\right)}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)}
Since \frac{x-5}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)} and \frac{\left(x+2\right)\left(-3x-1\right)}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x-5+3x^{2}+x+6x+2}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)}
Do the multiplications in x-5-\left(x+2\right)\left(-3x-1\right).
\frac{8x-3+3x^{2}}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)}
Combine like terms in x-5+3x^{2}+x+6x+2.
\frac{\left(3x-1\right)\left(x+3\right)}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)}
Factor the expressions that are not already factored in \frac{8x-3+3x^{2}}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)}.
\frac{x+3}{\left(x-5\right)\left(-3x-1\right)}
Cancel out 3x-1 in both numerator and denominator.
\frac{x+3}{-3x^{2}+14x+5}
Expand \left(x-5\right)\left(-3x-1\right).
\frac{1}{\left(-3x-1\right)\left(3x-1\right)}-\frac{x+2}{\left(x-5\right)\left(3x-1\right)}
Factor 1-9x^{2}. Factor 3x^{2}-16x+5.
\frac{x-5}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)}-\frac{\left(x+2\right)\left(-3x-1\right)}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(-3x-1\right)\left(3x-1\right) and \left(x-5\right)\left(3x-1\right) is \left(x-5\right)\left(-3x-1\right)\left(3x-1\right). Multiply \frac{1}{\left(-3x-1\right)\left(3x-1\right)} times \frac{x-5}{x-5}. Multiply \frac{x+2}{\left(x-5\right)\left(3x-1\right)} times \frac{-3x-1}{-3x-1}.
\frac{x-5-\left(x+2\right)\left(-3x-1\right)}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)}
Since \frac{x-5}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)} and \frac{\left(x+2\right)\left(-3x-1\right)}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x-5+3x^{2}+x+6x+2}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)}
Do the multiplications in x-5-\left(x+2\right)\left(-3x-1\right).
\frac{8x-3+3x^{2}}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)}
Combine like terms in x-5+3x^{2}+x+6x+2.
\frac{\left(3x-1\right)\left(x+3\right)}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)}
Factor the expressions that are not already factored in \frac{8x-3+3x^{2}}{\left(x-5\right)\left(-3x-1\right)\left(3x-1\right)}.
\frac{x+3}{\left(x-5\right)\left(-3x-1\right)}
Cancel out 3x-1 in both numerator and denominator.
\frac{x+3}{-3x^{2}+14x+5}
Expand \left(x-5\right)\left(-3x-1\right).