Evaluate
\frac{a+2b}{a+b}
Differentiate w.r.t. b
\frac{a}{\left(a+b\right)^{2}}
Share
Copied to clipboard
\frac{1}{\frac{b^{2}}{b^{2}}-\frac{a^{2}}{b^{2}}}+\frac{b}{a+b}+\frac{a^{2}}{a^{2}-b^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b^{2}}{b^{2}}.
\frac{1}{\frac{b^{2}-a^{2}}{b^{2}}}+\frac{b}{a+b}+\frac{a^{2}}{a^{2}-b^{2}}
Since \frac{b^{2}}{b^{2}} and \frac{a^{2}}{b^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{b^{2}}{b^{2}-a^{2}}+\frac{b}{a+b}+\frac{a^{2}}{a^{2}-b^{2}}
Divide 1 by \frac{b^{2}-a^{2}}{b^{2}} by multiplying 1 by the reciprocal of \frac{b^{2}-a^{2}}{b^{2}}.
\frac{b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{b}{a+b}+\frac{a^{2}}{a^{2}-b^{2}}
Factor b^{2}-a^{2}.
\frac{b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{b\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}+\frac{a^{2}}{a^{2}-b^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(-a+b\right) and a+b is \left(a+b\right)\left(-a+b\right). Multiply \frac{b}{a+b} times \frac{-a+b}{-a+b}.
\frac{b^{2}+b\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}+\frac{a^{2}}{a^{2}-b^{2}}
Since \frac{b^{2}}{\left(a+b\right)\left(-a+b\right)} and \frac{b\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)} have the same denominator, add them by adding their numerators.
\frac{b^{2}-ba+b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{a^{2}}{a^{2}-b^{2}}
Do the multiplications in b^{2}+b\left(-a+b\right).
\frac{-ba+2b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{a^{2}}{a^{2}-b^{2}}
Combine like terms in b^{2}-ba+b^{2}.
\frac{-ba+2b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{a^{2}}{\left(a+b\right)\left(a-b\right)}
Factor a^{2}-b^{2}.
\frac{-ba+2b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{-a^{2}}{\left(a+b\right)\left(-a+b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(-a+b\right) and \left(a+b\right)\left(a-b\right) is \left(a+b\right)\left(-a+b\right). Multiply \frac{a^{2}}{\left(a+b\right)\left(a-b\right)} times \frac{-1}{-1}.
\frac{-ba+2b^{2}-a^{2}}{\left(a+b\right)\left(-a+b\right)}
Since \frac{-ba+2b^{2}}{\left(a+b\right)\left(-a+b\right)} and \frac{-a^{2}}{\left(a+b\right)\left(-a+b\right)} have the same denominator, add them by adding their numerators.
\frac{\left(a+2b\right)\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}
Factor the expressions that are not already factored in \frac{-ba+2b^{2}-a^{2}}{\left(a+b\right)\left(-a+b\right)}.
\frac{a+2b}{a+b}
Cancel out -a+b in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}