Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. b
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{\frac{b^{2}}{b^{2}}-\frac{a^{2}}{b^{2}}}+\frac{b}{a+b}+\frac{a^{2}}{a^{2}-b^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{b^{2}}{b^{2}}.
\frac{1}{\frac{b^{2}-a^{2}}{b^{2}}}+\frac{b}{a+b}+\frac{a^{2}}{a^{2}-b^{2}}
Since \frac{b^{2}}{b^{2}} and \frac{a^{2}}{b^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{b^{2}}{b^{2}-a^{2}}+\frac{b}{a+b}+\frac{a^{2}}{a^{2}-b^{2}}
Divide 1 by \frac{b^{2}-a^{2}}{b^{2}} by multiplying 1 by the reciprocal of \frac{b^{2}-a^{2}}{b^{2}}.
\frac{b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{b}{a+b}+\frac{a^{2}}{a^{2}-b^{2}}
Factor b^{2}-a^{2}.
\frac{b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{b\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}+\frac{a^{2}}{a^{2}-b^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(-a+b\right) and a+b is \left(a+b\right)\left(-a+b\right). Multiply \frac{b}{a+b} times \frac{-a+b}{-a+b}.
\frac{b^{2}+b\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}+\frac{a^{2}}{a^{2}-b^{2}}
Since \frac{b^{2}}{\left(a+b\right)\left(-a+b\right)} and \frac{b\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)} have the same denominator, add them by adding their numerators.
\frac{b^{2}-ba+b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{a^{2}}{a^{2}-b^{2}}
Do the multiplications in b^{2}+b\left(-a+b\right).
\frac{-ba+2b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{a^{2}}{a^{2}-b^{2}}
Combine like terms in b^{2}-ba+b^{2}.
\frac{-ba+2b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{a^{2}}{\left(a+b\right)\left(a-b\right)}
Factor a^{2}-b^{2}.
\frac{-ba+2b^{2}}{\left(a+b\right)\left(-a+b\right)}+\frac{-a^{2}}{\left(a+b\right)\left(-a+b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a+b\right)\left(-a+b\right) and \left(a+b\right)\left(a-b\right) is \left(a+b\right)\left(-a+b\right). Multiply \frac{a^{2}}{\left(a+b\right)\left(a-b\right)} times \frac{-1}{-1}.
\frac{-ba+2b^{2}-a^{2}}{\left(a+b\right)\left(-a+b\right)}
Since \frac{-ba+2b^{2}}{\left(a+b\right)\left(-a+b\right)} and \frac{-a^{2}}{\left(a+b\right)\left(-a+b\right)} have the same denominator, add them by adding their numerators.
\frac{\left(a+2b\right)\left(-a+b\right)}{\left(a+b\right)\left(-a+b\right)}
Factor the expressions that are not already factored in \frac{-ba+2b^{2}-a^{2}}{\left(a+b\right)\left(-a+b\right)}.
\frac{a+2b}{a+b}
Cancel out -a+b in both numerator and denominator.