\frac { 1 } { 1 } | \frac { 1 } { 6 } + \frac { 1 } { 7 }
Evaluate
\frac{13}{42}\approx 0.30952381
Factor
\frac{13}{2 \cdot 3 \cdot 7} = 0.30952380952380953
Share
Copied to clipboard
1|\frac{1}{6}+\frac{1}{7}|
Divide 1 by 1 to get 1.
1|\frac{7}{42}+\frac{6}{42}|
Least common multiple of 6 and 7 is 42. Convert \frac{1}{6} and \frac{1}{7} to fractions with denominator 42.
1|\frac{7+6}{42}|
Since \frac{7}{42} and \frac{6}{42} have the same denominator, add them by adding their numerators.
1|\frac{13}{42}|
Add 7 and 6 to get 13.
1\times \frac{13}{42}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of \frac{13}{42} is \frac{13}{42}.
\frac{13}{42}
Multiply 1 and \frac{13}{42} to get \frac{13}{42}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}