Skip to main content
Solve for R_2
Tick mark Image

Similar Problems from Web Search

Share

1=\frac{R_{2}^{3}\times 11\times 86^{2}}{11\times 86^{2}}
Anything divided by one gives itself.
1=R_{2}^{3}
Cancel out 11\times 86^{2} in both numerator and denominator.
R_{2}^{3}=1
Swap sides so that all variable terms are on the left hand side.
R_{2}^{3}-1=0
Subtract 1 from both sides.
±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -1 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
R_{2}=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
R_{2}^{2}+R_{2}+1=0
By Factor theorem, R_{2}-k is a factor of the polynomial for each root k. Divide R_{2}^{3}-1 by R_{2}-1 to get R_{2}^{2}+R_{2}+1. Solve the equation where the result equals to 0.
R_{2}=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 1 for b, and 1 for c in the quadratic formula.
R_{2}=\frac{-1±\sqrt{-3}}{2}
Do the calculations.
R_{2}\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
R_{2}=1
List all found solutions.