Solve for x
x = \frac{15 \sqrt{193} + 195}{16} \approx 25.21166624
x=\frac{195-15\sqrt{193}}{16}\approx -0.83666624
Graph
Share
Copied to clipboard
\frac{27}{4}+12+54x\left(8x+9\right)^{-1}=x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12x, the least common multiple of x,12.
\frac{75}{4}+54x\left(8x+9\right)^{-1}=x
Add \frac{27}{4} and 12 to get \frac{75}{4}.
\frac{75}{4}+54x\left(8x+9\right)^{-1}-x=0
Subtract x from both sides.
-x+54\times \frac{1}{8x+9}x+\frac{75}{4}=0
Reorder the terms.
-x\times 4\left(8x+9\right)+54\times 4\times 1x+4\left(8x+9\right)\times \frac{75}{4}=0
Variable x cannot be equal to -\frac{9}{8} since division by zero is not defined. Multiply both sides of the equation by 4\left(8x+9\right), the least common multiple of 8x+9,4.
-4x\left(8x+9\right)+54\times 4\times 1x+4\left(8x+9\right)\times \frac{75}{4}=0
Multiply -1 and 4 to get -4.
-32x^{2}-36x+54\times 4\times 1x+4\left(8x+9\right)\times \frac{75}{4}=0
Use the distributive property to multiply -4x by 8x+9.
-32x^{2}-36x+216\times 1x+4\left(8x+9\right)\times \frac{75}{4}=0
Multiply 54 and 4 to get 216.
-32x^{2}-36x+216x+4\left(8x+9\right)\times \frac{75}{4}=0
Multiply 216 and 1 to get 216.
-32x^{2}+180x+4\left(8x+9\right)\times \frac{75}{4}=0
Combine -36x and 216x to get 180x.
-32x^{2}+180x+75\left(8x+9\right)=0
Multiply 4 and \frac{75}{4} to get 75.
-32x^{2}+180x+600x+675=0
Use the distributive property to multiply 75 by 8x+9.
-32x^{2}+780x+675=0
Combine 180x and 600x to get 780x.
x=\frac{-780±\sqrt{780^{2}-4\left(-32\right)\times 675}}{2\left(-32\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -32 for a, 780 for b, and 675 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-780±\sqrt{608400-4\left(-32\right)\times 675}}{2\left(-32\right)}
Square 780.
x=\frac{-780±\sqrt{608400+128\times 675}}{2\left(-32\right)}
Multiply -4 times -32.
x=\frac{-780±\sqrt{608400+86400}}{2\left(-32\right)}
Multiply 128 times 675.
x=\frac{-780±\sqrt{694800}}{2\left(-32\right)}
Add 608400 to 86400.
x=\frac{-780±60\sqrt{193}}{2\left(-32\right)}
Take the square root of 694800.
x=\frac{-780±60\sqrt{193}}{-64}
Multiply 2 times -32.
x=\frac{60\sqrt{193}-780}{-64}
Now solve the equation x=\frac{-780±60\sqrt{193}}{-64} when ± is plus. Add -780 to 60\sqrt{193}.
x=\frac{195-15\sqrt{193}}{16}
Divide -780+60\sqrt{193} by -64.
x=\frac{-60\sqrt{193}-780}{-64}
Now solve the equation x=\frac{-780±60\sqrt{193}}{-64} when ± is minus. Subtract 60\sqrt{193} from -780.
x=\frac{15\sqrt{193}+195}{16}
Divide -780-60\sqrt{193} by -64.
x=\frac{195-15\sqrt{193}}{16} x=\frac{15\sqrt{193}+195}{16}
The equation is now solved.
\frac{27}{4}+12+54x\left(8x+9\right)^{-1}=x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12x, the least common multiple of x,12.
\frac{75}{4}+54x\left(8x+9\right)^{-1}=x
Add \frac{27}{4} and 12 to get \frac{75}{4}.
\frac{75}{4}+54x\left(8x+9\right)^{-1}-x=0
Subtract x from both sides.
54x\left(8x+9\right)^{-1}-x=-\frac{75}{4}
Subtract \frac{75}{4} from both sides. Anything subtracted from zero gives its negation.
-x+54\times \frac{1}{8x+9}x=-\frac{75}{4}
Reorder the terms.
-x\times 4\left(8x+9\right)+54\times 4\times 1x=-75\left(8x+9\right)
Variable x cannot be equal to -\frac{9}{8} since division by zero is not defined. Multiply both sides of the equation by 4\left(8x+9\right), the least common multiple of 8x+9,4.
-4x\left(8x+9\right)+54\times 4\times 1x=-75\left(8x+9\right)
Multiply -1 and 4 to get -4.
-32x^{2}-36x+54\times 4\times 1x=-75\left(8x+9\right)
Use the distributive property to multiply -4x by 8x+9.
-32x^{2}-36x+216\times 1x=-75\left(8x+9\right)
Multiply 54 and 4 to get 216.
-32x^{2}-36x+216x=-75\left(8x+9\right)
Multiply 216 and 1 to get 216.
-32x^{2}+180x=-75\left(8x+9\right)
Combine -36x and 216x to get 180x.
-32x^{2}+180x=-600x-675
Use the distributive property to multiply -75 by 8x+9.
-32x^{2}+180x+600x=-675
Add 600x to both sides.
-32x^{2}+780x=-675
Combine 180x and 600x to get 780x.
\frac{-32x^{2}+780x}{-32}=-\frac{675}{-32}
Divide both sides by -32.
x^{2}+\frac{780}{-32}x=-\frac{675}{-32}
Dividing by -32 undoes the multiplication by -32.
x^{2}-\frac{195}{8}x=-\frac{675}{-32}
Reduce the fraction \frac{780}{-32} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{195}{8}x=\frac{675}{32}
Divide -675 by -32.
x^{2}-\frac{195}{8}x+\left(-\frac{195}{16}\right)^{2}=\frac{675}{32}+\left(-\frac{195}{16}\right)^{2}
Divide -\frac{195}{8}, the coefficient of the x term, by 2 to get -\frac{195}{16}. Then add the square of -\frac{195}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{195}{8}x+\frac{38025}{256}=\frac{675}{32}+\frac{38025}{256}
Square -\frac{195}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{195}{8}x+\frac{38025}{256}=\frac{43425}{256}
Add \frac{675}{32} to \frac{38025}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{195}{16}\right)^{2}=\frac{43425}{256}
Factor x^{2}-\frac{195}{8}x+\frac{38025}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{195}{16}\right)^{2}}=\sqrt{\frac{43425}{256}}
Take the square root of both sides of the equation.
x-\frac{195}{16}=\frac{15\sqrt{193}}{16} x-\frac{195}{16}=-\frac{15\sqrt{193}}{16}
Simplify.
x=\frac{15\sqrt{193}+195}{16} x=\frac{195-15\sqrt{193}}{16}
Add \frac{195}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}