Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{x+1}{\left(x+1\right)\left(-x+1\right)}+\frac{2}{1+x^{2}}-\frac{4}{1+x^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1+x and 1-x is \left(x+1\right)\left(-x+1\right). Multiply \frac{1}{1+x} times \frac{-x+1}{-x+1}. Multiply \frac{1}{1-x} times \frac{x+1}{x+1}.
\frac{-x+1-\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)}+\frac{2}{1+x^{2}}-\frac{4}{1+x^{4}}
Since \frac{-x+1}{\left(x+1\right)\left(-x+1\right)} and \frac{x+1}{\left(x+1\right)\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x+1-x-1}{\left(x+1\right)\left(-x+1\right)}+\frac{2}{1+x^{2}}-\frac{4}{1+x^{4}}
Do the multiplications in -x+1-\left(x+1\right).
\frac{-2x}{\left(x+1\right)\left(-x+1\right)}+\frac{2}{1+x^{2}}-\frac{4}{1+x^{4}}
Combine like terms in -x+1-x-1.
\frac{-2x\left(x^{2}+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}+\frac{2\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}-\frac{4}{1+x^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(-x+1\right) and 1+x^{2} is \left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right). Multiply \frac{-2x}{\left(x+1\right)\left(-x+1\right)} times \frac{x^{2}+1}{x^{2}+1}. Multiply \frac{2}{1+x^{2}} times \frac{\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}.
\frac{-2x\left(x^{2}+1\right)+2\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}-\frac{4}{1+x^{4}}
Since \frac{-2x\left(x^{2}+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)} and \frac{2\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{-2x^{3}-2x-2x^{2}+2x-2x+2}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}-\frac{4}{1+x^{4}}
Do the multiplications in -2x\left(x^{2}+1\right)+2\left(x+1\right)\left(-x+1\right).
\frac{-2x^{3}-2x-2x^{2}+2}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}-\frac{4}{1+x^{4}}
Combine like terms in -2x^{3}-2x-2x^{2}+2x-2x+2.
\frac{\left(-2x^{3}-2x-2x^{2}+2\right)\left(x^{4}+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}-\frac{4\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right) and 1+x^{4} is \left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right). Multiply \frac{-2x^{3}-2x-2x^{2}+2}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)} times \frac{x^{4}+1}{x^{4}+1}. Multiply \frac{4}{1+x^{4}} times \frac{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}.
\frac{\left(-2x^{3}-2x-2x^{2}+2\right)\left(x^{4}+1\right)-4\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
Since \frac{\left(-2x^{3}-2x-2x^{2}+2\right)\left(x^{4}+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)} and \frac{4\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x^{7}-2x^{3}-2x^{5}-2x-2x^{6}-2x^{2}+2x^{4}+2+4x^{4}+4x^{2}-4x^{3}-4x+4x^{3}+4x-4x^{2}-4}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
Do the multiplications in \left(-2x^{3}-2x-2x^{2}+2\right)\left(x^{4}+1\right)-4\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right).
\frac{-2x^{7}-2x^{3}-2x^{5}-2x^{6}-2x-2x^{2}+6x^{4}-2}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
Combine like terms in -2x^{7}-2x^{3}-2x^{5}-2x-2x^{6}-2x^{2}+2x^{4}+2+4x^{4}+4x^{2}-4x^{3}-4x+4x^{3}+4x-4x^{2}-4.
\frac{-2x^{7}-2x^{3}-2x^{5}-2x^{6}-2x-2x^{2}+6x^{4}-2}{-x^{8}+1}
Expand \left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right).