Evaluate
\frac{2\left(-x^{7}-x^{6}-x^{5}+3x^{4}-x^{3}-x^{2}-x-1\right)}{1-x^{8}}
Differentiate w.r.t. x
-\frac{2\left(x^{14}+2x^{13}+3x^{12}-12x^{11}+5x^{10}+6x^{9}+7x^{8}+8x^{7}+7x^{6}+6x^{5}+5x^{4}-12x^{3}+3x^{2}+2x+1\right)}{\left(x^{8}-1\right)^{2}}
Graph
Share
Copied to clipboard
\frac{-x+1}{\left(x+1\right)\left(-x+1\right)}-\frac{x+1}{\left(x+1\right)\left(-x+1\right)}+\frac{2}{1+x^{2}}-\frac{4}{1+x^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1+x and 1-x is \left(x+1\right)\left(-x+1\right). Multiply \frac{1}{1+x} times \frac{-x+1}{-x+1}. Multiply \frac{1}{1-x} times \frac{x+1}{x+1}.
\frac{-x+1-\left(x+1\right)}{\left(x+1\right)\left(-x+1\right)}+\frac{2}{1+x^{2}}-\frac{4}{1+x^{4}}
Since \frac{-x+1}{\left(x+1\right)\left(-x+1\right)} and \frac{x+1}{\left(x+1\right)\left(-x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-x+1-x-1}{\left(x+1\right)\left(-x+1\right)}+\frac{2}{1+x^{2}}-\frac{4}{1+x^{4}}
Do the multiplications in -x+1-\left(x+1\right).
\frac{-2x}{\left(x+1\right)\left(-x+1\right)}+\frac{2}{1+x^{2}}-\frac{4}{1+x^{4}}
Combine like terms in -x+1-x-1.
\frac{-2x\left(x^{2}+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}+\frac{2\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}-\frac{4}{1+x^{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(-x+1\right) and 1+x^{2} is \left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right). Multiply \frac{-2x}{\left(x+1\right)\left(-x+1\right)} times \frac{x^{2}+1}{x^{2}+1}. Multiply \frac{2}{1+x^{2}} times \frac{\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)}.
\frac{-2x\left(x^{2}+1\right)+2\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}-\frac{4}{1+x^{4}}
Since \frac{-2x\left(x^{2}+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)} and \frac{2\left(x+1\right)\left(-x+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{-2x^{3}-2x-2x^{2}+2x-2x+2}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}-\frac{4}{1+x^{4}}
Do the multiplications in -2x\left(x^{2}+1\right)+2\left(x+1\right)\left(-x+1\right).
\frac{-2x^{3}-2x-2x^{2}+2}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}-\frac{4}{1+x^{4}}
Combine like terms in -2x^{3}-2x-2x^{2}+2x-2x+2.
\frac{\left(-2x^{3}-2x-2x^{2}+2\right)\left(x^{4}+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}-\frac{4\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right) and 1+x^{4} is \left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right). Multiply \frac{-2x^{3}-2x-2x^{2}+2}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)} times \frac{x^{4}+1}{x^{4}+1}. Multiply \frac{4}{1+x^{4}} times \frac{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}.
\frac{\left(-2x^{3}-2x-2x^{2}+2\right)\left(x^{4}+1\right)-4\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
Since \frac{\left(-2x^{3}-2x-2x^{2}+2\right)\left(x^{4}+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)} and \frac{4\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-2x^{7}-2x^{3}-2x^{5}-2x-2x^{6}-2x^{2}+2x^{4}+2+4x^{4}+4x^{2}-4x^{3}-4x+4x^{3}+4x-4x^{2}-4}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
Do the multiplications in \left(-2x^{3}-2x-2x^{2}+2\right)\left(x^{4}+1\right)-4\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right).
\frac{-2x^{7}-2x^{3}-2x^{5}-2x^{6}-2x-2x^{2}+6x^{4}-2}{\left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)}
Combine like terms in -2x^{7}-2x^{3}-2x^{5}-2x-2x^{6}-2x^{2}+2x^{4}+2+4x^{4}+4x^{2}-4x^{3}-4x+4x^{3}+4x-4x^{2}-4.
\frac{-2x^{7}-2x^{3}-2x^{5}-2x^{6}-2x-2x^{2}+6x^{4}-2}{-x^{8}+1}
Expand \left(x+1\right)\left(-x+1\right)\left(x^{2}+1\right)\left(x^{4}+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}