Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}+\frac{2i}{1-2i}
Multiply both numerator and denominator of \frac{1}{1+2i} by the complex conjugate of the denominator, 1-2i.
\frac{1-2i}{5}+\frac{2i}{1-2i}
Do the multiplications in \frac{1\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
\frac{1}{5}-\frac{2}{5}i+\frac{2i}{1-2i}
Divide 1-2i by 5 to get \frac{1}{5}-\frac{2}{5}i.
\frac{1}{5}-\frac{2}{5}i+\frac{2i\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}
Multiply both numerator and denominator of \frac{2i}{1-2i} by the complex conjugate of the denominator, 1+2i.
\frac{1}{5}-\frac{2}{5}i+\frac{-4+2i}{5}
Do the multiplications in \frac{2i\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}.
\frac{1}{5}-\frac{2}{5}i+\left(-\frac{4}{5}+\frac{2}{5}i\right)
Divide -4+2i by 5 to get -\frac{4}{5}+\frac{2}{5}i.
-\frac{3}{5}
Add \frac{1}{5}-\frac{2}{5}i and -\frac{4}{5}+\frac{2}{5}i to get -\frac{3}{5}.
Re(\frac{1\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}+\frac{2i}{1-2i})
Multiply both numerator and denominator of \frac{1}{1+2i} by the complex conjugate of the denominator, 1-2i.
Re(\frac{1-2i}{5}+\frac{2i}{1-2i})
Do the multiplications in \frac{1\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
Re(\frac{1}{5}-\frac{2}{5}i+\frac{2i}{1-2i})
Divide 1-2i by 5 to get \frac{1}{5}-\frac{2}{5}i.
Re(\frac{1}{5}-\frac{2}{5}i+\frac{2i\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)})
Multiply both numerator and denominator of \frac{2i}{1-2i} by the complex conjugate of the denominator, 1+2i.
Re(\frac{1}{5}-\frac{2}{5}i+\frac{-4+2i}{5})
Do the multiplications in \frac{2i\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}.
Re(\frac{1}{5}-\frac{2}{5}i+\left(-\frac{4}{5}+\frac{2}{5}i\right))
Divide -4+2i by 5 to get -\frac{4}{5}+\frac{2}{5}i.
Re(-\frac{3}{5})
Add \frac{1}{5}-\frac{2}{5}i and -\frac{4}{5}+\frac{2}{5}i to get -\frac{3}{5}.
-\frac{3}{5}
The real part of -\frac{3}{5} is -\frac{3}{5}.