Verify
true
Share
Copied to clipboard
\frac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}=1
Rationalize the denominator of \frac{1}{1+\sqrt{2}} by multiplying numerator and denominator by 1-\sqrt{2}.
\frac{1-\sqrt{2}}{1^{2}-\left(\sqrt{2}\right)^{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}=1
Consider \left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1-\sqrt{2}}{1-2}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}=1
Square 1. Square \sqrt{2}.
\frac{1-\sqrt{2}}{-1}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}=1
Subtract 2 from 1 to get -1.
-1-\left(-\sqrt{2}\right)+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}=1
Anything divided by -1 gives its opposite. To find the opposite of 1-\sqrt{2}, find the opposite of each term.
-1+\sqrt{2}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}=1
The opposite of -\sqrt{2} is \sqrt{2}.
-1+\sqrt{2}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{1}{\sqrt{3}+\sqrt{4}}=1
Rationalize the denominator of \frac{1}{\sqrt{2}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{3}.
-1+\sqrt{2}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}=1
Consider \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-1+\sqrt{2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+\frac{1}{\sqrt{3}+\sqrt{4}}=1
Square \sqrt{2}. Square \sqrt{3}.
-1+\sqrt{2}+\frac{\sqrt{2}-\sqrt{3}}{-1}+\frac{1}{\sqrt{3}+\sqrt{4}}=1
Subtract 3 from 2 to get -1.
-1+\sqrt{2}-\sqrt{2}-\left(-\sqrt{3}\right)+\frac{1}{\sqrt{3}+\sqrt{4}}=1
Anything divided by -1 gives its opposite. To find the opposite of \sqrt{2}-\sqrt{3}, find the opposite of each term.
-1-\left(-\sqrt{3}\right)+\frac{1}{\sqrt{3}+\sqrt{4}}=1
Combine \sqrt{2} and -\sqrt{2} to get 0.
-1+\sqrt{3}+\frac{1}{\sqrt{3}+\sqrt{4}}=1
The opposite of -\sqrt{3} is \sqrt{3}.
-1+\sqrt{3}+\frac{1}{\sqrt{3}+2}=1
Calculate the square root of 4 and get 2.
-1+\sqrt{3}+\frac{\sqrt{3}-2}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}=1
Rationalize the denominator of \frac{1}{\sqrt{3}+2} by multiplying numerator and denominator by \sqrt{3}-2.
-1+\sqrt{3}+\frac{\sqrt{3}-2}{\left(\sqrt{3}\right)^{2}-2^{2}}=1
Consider \left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-1+\sqrt{3}+\frac{\sqrt{3}-2}{3-4}=1
Square \sqrt{3}. Square 2.
-1+\sqrt{3}+\frac{\sqrt{3}-2}{-1}=1
Subtract 4 from 3 to get -1.
-1+\sqrt{3}-\sqrt{3}-\left(-2\right)=1
Anything divided by -1 gives its opposite. To find the opposite of \sqrt{3}-2, find the opposite of each term.
-1-\left(-2\right)=1
Combine \sqrt{3} and -\sqrt{3} to get 0.
-1+2=1
The opposite of -2 is 2.
1=1
Add -1 and 2 to get 1.
\text{true}
Compare 1 and 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}