Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1-\sqrt{11}}{\left(1+\sqrt{11}\right)\left(1-\sqrt{11}\right)}
Rationalize the denominator of \frac{1}{1+\sqrt{11}} by multiplying numerator and denominator by 1-\sqrt{11}.
\frac{1-\sqrt{11}}{1^{2}-\left(\sqrt{11}\right)^{2}}
Consider \left(1+\sqrt{11}\right)\left(1-\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1-\sqrt{11}}{1-11}
Square 1. Square \sqrt{11}.
\frac{1-\sqrt{11}}{-10}
Subtract 11 from 1 to get -10.
\frac{-1+\sqrt{11}}{10}
Multiply both numerator and denominator by -1.