Evaluate
2-\sqrt{2}\approx 0.585786438
Share
Copied to clipboard
\frac{1}{1+\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{1}{1+\frac{\sqrt{2}}{2}}
The square of \sqrt{2} is 2.
\frac{1}{\frac{2}{2}+\frac{\sqrt{2}}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{1}{\frac{2+\sqrt{2}}{2}}
Since \frac{2}{2} and \frac{\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\frac{2}{2+\sqrt{2}}
Divide 1 by \frac{2+\sqrt{2}}{2} by multiplying 1 by the reciprocal of \frac{2+\sqrt{2}}{2}.
\frac{2\left(2-\sqrt{2}\right)}{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)}
Rationalize the denominator of \frac{2}{2+\sqrt{2}} by multiplying numerator and denominator by 2-\sqrt{2}.
\frac{2\left(2-\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\left(2-\sqrt{2}\right)}{4-2}
Square 2. Square \sqrt{2}.
\frac{2\left(2-\sqrt{2}\right)}{2}
Subtract 2 from 4 to get 2.
2-\sqrt{2}
Cancel out 2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}