Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1\left(-7-6i\right)}{\left(-7+6i\right)\left(-7-6i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -7-6i.
\frac{1\left(-7-6i\right)}{\left(-7\right)^{2}-6^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(-7-6i\right)}{85}
By definition, i^{2} is -1. Calculate the denominator.
\frac{-7-6i}{85}
Multiply 1 and -7-6i to get -7-6i.
-\frac{7}{85}-\frac{6}{85}i
Divide -7-6i by 85 to get -\frac{7}{85}-\frac{6}{85}i.
Re(\frac{1\left(-7-6i\right)}{\left(-7+6i\right)\left(-7-6i\right)})
Multiply both numerator and denominator of \frac{1}{-7+6i} by the complex conjugate of the denominator, -7-6i.
Re(\frac{1\left(-7-6i\right)}{\left(-7\right)^{2}-6^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(-7-6i\right)}{85})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{-7-6i}{85})
Multiply 1 and -7-6i to get -7-6i.
Re(-\frac{7}{85}-\frac{6}{85}i)
Divide -7-6i by 85 to get -\frac{7}{85}-\frac{6}{85}i.
-\frac{7}{85}
The real part of -\frac{7}{85}-\frac{6}{85}i is -\frac{7}{85}.