\frac { 1 } { - 11 } = \frac { 1 } { - 7 } + \frac { 1 } { d o }
Solve for d
d=\frac{77}{4o}
o\neq 0
Solve for o
o=\frac{77}{4d}
d\neq 0
Share
Copied to clipboard
-7do=-11do+77
Variable d cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 77do, the least common multiple of -11,-7,do.
-7do+11do=77
Add 11do to both sides.
4do=77
Combine -7do and 11do to get 4do.
4od=77
The equation is in standard form.
\frac{4od}{4o}=\frac{77}{4o}
Divide both sides by 4o.
d=\frac{77}{4o}
Dividing by 4o undoes the multiplication by 4o.
d=\frac{77}{4o}\text{, }d\neq 0
Variable d cannot be equal to 0.
-7do=-11do+77
Variable o cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 77do, the least common multiple of -11,-7,do.
-7do+11do=77
Add 11do to both sides.
4do=77
Combine -7do and 11do to get 4do.
\frac{4do}{4d}=\frac{77}{4d}
Divide both sides by 4d.
o=\frac{77}{4d}
Dividing by 4d undoes the multiplication by 4d.
o=\frac{77}{4d}\text{, }o\neq 0
Variable o cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}