Solve for x
x = \frac{\sqrt{21} + 5}{2} \approx 4.791287847
x=\frac{5-\sqrt{21}}{2}\approx 0.208712153
Graph
Share
Copied to clipboard
x^{2}-4=\left(x-3\right)\left(2x+1\right)
Variable x cannot be equal to any of the values -2,2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x-2\right)\left(x+2\right), the least common multiple of x-3,x^{2}-4.
x^{2}-4=2x^{2}-5x-3
Use the distributive property to multiply x-3 by 2x+1 and combine like terms.
x^{2}-4-2x^{2}=-5x-3
Subtract 2x^{2} from both sides.
-x^{2}-4=-5x-3
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-4+5x=-3
Add 5x to both sides.
-x^{2}-4+5x+3=0
Add 3 to both sides.
-x^{2}-1+5x=0
Add -4 and 3 to get -1.
-x^{2}+5x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Square 5.
x=\frac{-5±\sqrt{25+4\left(-1\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-5±\sqrt{25-4}}{2\left(-1\right)}
Multiply 4 times -1.
x=\frac{-5±\sqrt{21}}{2\left(-1\right)}
Add 25 to -4.
x=\frac{-5±\sqrt{21}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{21}-5}{-2}
Now solve the equation x=\frac{-5±\sqrt{21}}{-2} when ± is plus. Add -5 to \sqrt{21}.
x=\frac{5-\sqrt{21}}{2}
Divide -5+\sqrt{21} by -2.
x=\frac{-\sqrt{21}-5}{-2}
Now solve the equation x=\frac{-5±\sqrt{21}}{-2} when ± is minus. Subtract \sqrt{21} from -5.
x=\frac{\sqrt{21}+5}{2}
Divide -5-\sqrt{21} by -2.
x=\frac{5-\sqrt{21}}{2} x=\frac{\sqrt{21}+5}{2}
The equation is now solved.
x^{2}-4=\left(x-3\right)\left(2x+1\right)
Variable x cannot be equal to any of the values -2,2,3 since division by zero is not defined. Multiply both sides of the equation by \left(x-3\right)\left(x-2\right)\left(x+2\right), the least common multiple of x-3,x^{2}-4.
x^{2}-4=2x^{2}-5x-3
Use the distributive property to multiply x-3 by 2x+1 and combine like terms.
x^{2}-4-2x^{2}=-5x-3
Subtract 2x^{2} from both sides.
-x^{2}-4=-5x-3
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-4+5x=-3
Add 5x to both sides.
-x^{2}+5x=-3+4
Add 4 to both sides.
-x^{2}+5x=1
Add -3 and 4 to get 1.
\frac{-x^{2}+5x}{-1}=\frac{1}{-1}
Divide both sides by -1.
x^{2}+\frac{5}{-1}x=\frac{1}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-5x=\frac{1}{-1}
Divide 5 by -1.
x^{2}-5x=-1
Divide 1 by -1.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-1+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-1+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{21}{4}
Add -1 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{21}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{\sqrt{21}}{2} x-\frac{5}{2}=-\frac{\sqrt{21}}{2}
Simplify.
x=\frac{\sqrt{21}+5}{2} x=\frac{5-\sqrt{21}}{2}
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}