Solve for c (complex solution)
c=\frac{\left(x-4\right)\left(x+3\right)}{5\left(x-3\right)}
x\neq 3\text{ and }x\neq -3
Solve for c
c=\frac{\left(x-4\right)\left(x+3\right)}{5\left(x-3\right)}
|x|\neq 3
Solve for x
\left\{\begin{matrix}\\x=\frac{\sqrt{25c^{2}-50c+49}+5c+1}{2}\text{, }&\text{unconditionally}\\x=\frac{-\sqrt{25c^{2}-50c+49}+5c+1}{2}\text{, }&c\neq 0\end{matrix}\right.
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { 1 } { ( x - 3 ) } + \frac { 5 c } { ( x + 3 ) } = 1
Share
Copied to clipboard
x+3+\left(x-3\right)\times 5c=\left(x-3\right)\left(x+3\right)
Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x-3,x+3.
x+3+\left(5x-15\right)c=\left(x-3\right)\left(x+3\right)
Use the distributive property to multiply x-3 by 5.
x+3+5xc-15c=\left(x-3\right)\left(x+3\right)
Use the distributive property to multiply 5x-15 by c.
x+3+5xc-15c=x^{2}-9
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
3+5xc-15c=x^{2}-9-x
Subtract x from both sides.
5xc-15c=x^{2}-9-x-3
Subtract 3 from both sides.
5xc-15c=x^{2}-12-x
Subtract 3 from -9 to get -12.
\left(5x-15\right)c=x^{2}-12-x
Combine all terms containing c.
\left(5x-15\right)c=x^{2}-x-12
The equation is in standard form.
\frac{\left(5x-15\right)c}{5x-15}=\frac{\left(x-4\right)\left(x+3\right)}{5x-15}
Divide both sides by 5x-15.
c=\frac{\left(x-4\right)\left(x+3\right)}{5x-15}
Dividing by 5x-15 undoes the multiplication by 5x-15.
c=\frac{\left(x-4\right)\left(x+3\right)}{5\left(x-3\right)}
Divide \left(-4+x\right)\left(3+x\right) by 5x-15.
x+3+\left(x-3\right)\times 5c=\left(x-3\right)\left(x+3\right)
Multiply both sides of the equation by \left(x-3\right)\left(x+3\right), the least common multiple of x-3,x+3.
x+3+\left(5x-15\right)c=\left(x-3\right)\left(x+3\right)
Use the distributive property to multiply x-3 by 5.
x+3+5xc-15c=\left(x-3\right)\left(x+3\right)
Use the distributive property to multiply 5x-15 by c.
x+3+5xc-15c=x^{2}-9
Consider \left(x-3\right)\left(x+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
3+5xc-15c=x^{2}-9-x
Subtract x from both sides.
5xc-15c=x^{2}-9-x-3
Subtract 3 from both sides.
5xc-15c=x^{2}-12-x
Subtract 3 from -9 to get -12.
\left(5x-15\right)c=x^{2}-12-x
Combine all terms containing c.
\left(5x-15\right)c=x^{2}-x-12
The equation is in standard form.
\frac{\left(5x-15\right)c}{5x-15}=\frac{\left(x-4\right)\left(x+3\right)}{5x-15}
Divide both sides by 5x-15.
c=\frac{\left(x-4\right)\left(x+3\right)}{5x-15}
Dividing by 5x-15 undoes the multiplication by 5x-15.
c=\frac{\left(x-4\right)\left(x+3\right)}{5\left(x-3\right)}
Divide \left(-4+x\right)\left(3+x\right) by 5x-15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}