Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{\left(x-2\right)^{2}}+\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)^{2}}
Factor x^{2}-4.
\frac{x+2}{\left(x+2\right)\left(x-2\right)^{2}}+\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^{2}}+\frac{1}{\left(x+2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)^{2} and \left(x-2\right)\left(x+2\right) is \left(x+2\right)\left(x-2\right)^{2}. Multiply \frac{1}{\left(x-2\right)^{2}} times \frac{x+2}{x+2}. Multiply \frac{2}{\left(x-2\right)\left(x+2\right)} times \frac{x-2}{x-2}.
\frac{x+2+2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^{2}}+\frac{1}{\left(x+2\right)^{2}}
Since \frac{x+2}{\left(x+2\right)\left(x-2\right)^{2}} and \frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x+2+2x-4}{\left(x+2\right)\left(x-2\right)^{2}}+\frac{1}{\left(x+2\right)^{2}}
Do the multiplications in x+2+2\left(x-2\right).
\frac{3x-2}{\left(x+2\right)\left(x-2\right)^{2}}+\frac{1}{\left(x+2\right)^{2}}
Combine like terms in x+2+2x-4.
\frac{\left(3x-2\right)\left(x+2\right)}{\left(x-2\right)^{2}\left(x+2\right)^{2}}+\frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)\left(x-2\right)^{2} and \left(x+2\right)^{2} is \left(x-2\right)^{2}\left(x+2\right)^{2}. Multiply \frac{3x-2}{\left(x+2\right)\left(x-2\right)^{2}} times \frac{x+2}{x+2}. Multiply \frac{1}{\left(x+2\right)^{2}} times \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}}.
\frac{\left(3x-2\right)\left(x+2\right)+\left(x-2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}
Since \frac{\left(3x-2\right)\left(x+2\right)}{\left(x-2\right)^{2}\left(x+2\right)^{2}} and \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+6x-2x-4+x^{2}-4x+4}{\left(x-2\right)^{2}\left(x+2\right)^{2}}
Do the multiplications in \left(3x-2\right)\left(x+2\right)+\left(x-2\right)^{2}.
\frac{4x^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}
Combine like terms in 3x^{2}+6x-2x-4+x^{2}-4x+4.
\frac{4x^{2}}{x^{4}-8x^{2}+16}
Expand \left(x-2\right)^{2}\left(x+2\right)^{2}.
\frac{1}{\left(x-2\right)^{2}}+\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)^{2}}
Factor x^{2}-4.
\frac{x+2}{\left(x+2\right)\left(x-2\right)^{2}}+\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^{2}}+\frac{1}{\left(x+2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-2\right)^{2} and \left(x-2\right)\left(x+2\right) is \left(x+2\right)\left(x-2\right)^{2}. Multiply \frac{1}{\left(x-2\right)^{2}} times \frac{x+2}{x+2}. Multiply \frac{2}{\left(x-2\right)\left(x+2\right)} times \frac{x-2}{x-2}.
\frac{x+2+2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^{2}}+\frac{1}{\left(x+2\right)^{2}}
Since \frac{x+2}{\left(x+2\right)\left(x-2\right)^{2}} and \frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{x+2+2x-4}{\left(x+2\right)\left(x-2\right)^{2}}+\frac{1}{\left(x+2\right)^{2}}
Do the multiplications in x+2+2\left(x-2\right).
\frac{3x-2}{\left(x+2\right)\left(x-2\right)^{2}}+\frac{1}{\left(x+2\right)^{2}}
Combine like terms in x+2+2x-4.
\frac{\left(3x-2\right)\left(x+2\right)}{\left(x-2\right)^{2}\left(x+2\right)^{2}}+\frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)\left(x-2\right)^{2} and \left(x+2\right)^{2} is \left(x-2\right)^{2}\left(x+2\right)^{2}. Multiply \frac{3x-2}{\left(x+2\right)\left(x-2\right)^{2}} times \frac{x+2}{x+2}. Multiply \frac{1}{\left(x+2\right)^{2}} times \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}}.
\frac{\left(3x-2\right)\left(x+2\right)+\left(x-2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}
Since \frac{\left(3x-2\right)\left(x+2\right)}{\left(x-2\right)^{2}\left(x+2\right)^{2}} and \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{3x^{2}+6x-2x-4+x^{2}-4x+4}{\left(x-2\right)^{2}\left(x+2\right)^{2}}
Do the multiplications in \left(3x-2\right)\left(x+2\right)+\left(x-2\right)^{2}.
\frac{4x^{2}}{\left(x-2\right)^{2}\left(x+2\right)^{2}}
Combine like terms in 3x^{2}+6x-2x-4+x^{2}-4x+4.
\frac{4x^{2}}{x^{4}-8x^{2}+16}
Expand \left(x-2\right)^{2}\left(x+2\right)^{2}.