Solve for n
n = \frac{68}{19} = 3\frac{11}{19} \approx 3.578947368
Share
Copied to clipboard
30+30\left(n-2\right)\left(-\frac{1}{2}\right)=4\left(n-2\right)
Variable n cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by 30\left(n-2\right), the least common multiple of n-2,2,15.
30-15\left(n-2\right)=4\left(n-2\right)
Multiply 30 and -\frac{1}{2} to get -15.
30-15n+30=4\left(n-2\right)
Use the distributive property to multiply -15 by n-2.
60-15n=4\left(n-2\right)
Add 30 and 30 to get 60.
60-15n=4n-8
Use the distributive property to multiply 4 by n-2.
60-15n-4n=-8
Subtract 4n from both sides.
60-19n=-8
Combine -15n and -4n to get -19n.
-19n=-8-60
Subtract 60 from both sides.
-19n=-68
Subtract 60 from -8 to get -68.
n=\frac{-68}{-19}
Divide both sides by -19.
n=\frac{68}{19}
Fraction \frac{-68}{-19} can be simplified to \frac{68}{19} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}