Evaluate
\frac{18}{325}-\frac{1}{325}i\approx 0.055384615-0.003076923i
Real Part
\frac{18}{325} = 0.055384615384615386
Share
Copied to clipboard
\frac{1}{4\times 3+4\times \left(-2i\right)+3i\times 3+3\left(-2\right)i^{2}}
Multiply complex numbers 4+3i and 3-2i like you multiply binomials.
\frac{1}{4\times 3+4\times \left(-2i\right)+3i\times 3+3\left(-2\right)\left(-1\right)}
By definition, i^{2} is -1.
\frac{1}{12-8i+9i+6}
Do the multiplications in 4\times 3+4\times \left(-2i\right)+3i\times 3+3\left(-2\right)\left(-1\right).
\frac{1}{12+6+\left(-8+9\right)i}
Combine the real and imaginary parts in 12-8i+9i+6.
\frac{1}{18+i}
Do the additions in 12+6+\left(-8+9\right)i.
\frac{1\left(18-i\right)}{\left(18+i\right)\left(18-i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 18-i.
\frac{1\left(18-i\right)}{18^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(18-i\right)}{325}
By definition, i^{2} is -1. Calculate the denominator.
\frac{18-i}{325}
Multiply 1 and 18-i to get 18-i.
\frac{18}{325}-\frac{1}{325}i
Divide 18-i by 325 to get \frac{18}{325}-\frac{1}{325}i.
Re(\frac{1}{4\times 3+4\times \left(-2i\right)+3i\times 3+3\left(-2\right)i^{2}})
Multiply complex numbers 4+3i and 3-2i like you multiply binomials.
Re(\frac{1}{4\times 3+4\times \left(-2i\right)+3i\times 3+3\left(-2\right)\left(-1\right)})
By definition, i^{2} is -1.
Re(\frac{1}{12-8i+9i+6})
Do the multiplications in 4\times 3+4\times \left(-2i\right)+3i\times 3+3\left(-2\right)\left(-1\right).
Re(\frac{1}{12+6+\left(-8+9\right)i})
Combine the real and imaginary parts in 12-8i+9i+6.
Re(\frac{1}{18+i})
Do the additions in 12+6+\left(-8+9\right)i.
Re(\frac{1\left(18-i\right)}{\left(18+i\right)\left(18-i\right)})
Multiply both numerator and denominator of \frac{1}{18+i} by the complex conjugate of the denominator, 18-i.
Re(\frac{1\left(18-i\right)}{18^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(18-i\right)}{325})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{18-i}{325})
Multiply 1 and 18-i to get 18-i.
Re(\frac{18}{325}-\frac{1}{325}i)
Divide 18-i by 325 to get \frac{18}{325}-\frac{1}{325}i.
\frac{18}{325}
The real part of \frac{18}{325}-\frac{1}{325}i is \frac{18}{325}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}