Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{\left(2+i\right)^{7}}
Use the rules of exponents to simplify the expression.
\left(2+i\right)^{7\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(2+i\right)^{-7}
Multiply 7 times -1.
-\frac{278}{78125}+\frac{29}{78125}i
Raise 2+i to the power -7.
Re(\frac{1}{-278-29i})
Calculate 2+i to the power of 7 and get -278-29i.
Re(\frac{1\left(-278+29i\right)}{\left(-278-29i\right)\left(-278+29i\right)})
Multiply both numerator and denominator of \frac{1}{-278-29i} by the complex conjugate of the denominator, -278+29i.
Re(\frac{-278+29i}{78125})
Do the multiplications in \frac{1\left(-278+29i\right)}{\left(-278-29i\right)\left(-278+29i\right)}.
Re(-\frac{278}{78125}+\frac{29}{78125}i)
Divide -278+29i by 78125 to get -\frac{278}{78125}+\frac{29}{78125}i.
-\frac{278}{78125}
The real part of -\frac{278}{78125}+\frac{29}{78125}i is -\frac{278}{78125}.