Evaluate
-\frac{278}{78125}+\frac{29}{78125}i=-0.0035584+0.0003712i
Real Part
-\frac{278}{78125} = -0.0035584
Share
Copied to clipboard
\frac{1}{\left(2+i\right)^{7}}
Use the rules of exponents to simplify the expression.
\left(2+i\right)^{7\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(2+i\right)^{-7}
Multiply 7 times -1.
-\frac{278}{78125}+\frac{29}{78125}i
Raise 2+i to the power -7.
Re(\frac{1}{-278-29i})
Calculate 2+i to the power of 7 and get -278-29i.
Re(\frac{1\left(-278+29i\right)}{\left(-278-29i\right)\left(-278+29i\right)})
Multiply both numerator and denominator of \frac{1}{-278-29i} by the complex conjugate of the denominator, -278+29i.
Re(\frac{-278+29i}{78125})
Do the multiplications in \frac{1\left(-278+29i\right)}{\left(-278-29i\right)\left(-278+29i\right)}.
Re(-\frac{278}{78125}+\frac{29}{78125}i)
Divide -278+29i by 78125 to get -\frac{278}{78125}+\frac{29}{78125}i.
-\frac{278}{78125}
The real part of -\frac{278}{78125}+\frac{29}{78125}i is -\frac{278}{78125}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}