Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1\left(13.5-21i\right)}{\left(13.5+21i\right)\left(13.5-21i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 13.5-21i.
\frac{1\left(13.5-21i\right)}{13.5^{2}-21^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(13.5-21i\right)}{623.25}
By definition, i^{2} is -1. Calculate the denominator.
\frac{13.5-21i}{623.25}
Multiply 1 and 13.5-21i to get 13.5-21i.
\frac{6}{277}-\frac{28}{831}i
Divide 13.5-21i by 623.25 to get \frac{6}{277}-\frac{28}{831}i.
Re(\frac{1\left(13.5-21i\right)}{\left(13.5+21i\right)\left(13.5-21i\right)})
Multiply both numerator and denominator of \frac{1}{13.5+21i} by the complex conjugate of the denominator, 13.5-21i.
Re(\frac{1\left(13.5-21i\right)}{13.5^{2}-21^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(13.5-21i\right)}{623.25})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{13.5-21i}{623.25})
Multiply 1 and 13.5-21i to get 13.5-21i.
Re(\frac{6}{277}-\frac{28}{831}i)
Divide 13.5-21i by 623.25 to get \frac{6}{277}-\frac{28}{831}i.
\frac{6}{277}
The real part of \frac{6}{277}-\frac{28}{831}i is \frac{6}{277}.