Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{\left(1+t\right)^{2}}+\frac{1}{\left(t-1\right)\left(-t-1\right)}
Factor 1-t^{2}.
\frac{t-1}{\left(t-1\right)\left(t+1\right)^{2}}+\frac{-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(1+t\right)^{2} and \left(t-1\right)\left(-t-1\right) is \left(t-1\right)\left(t+1\right)^{2}. Multiply \frac{1}{\left(1+t\right)^{2}} times \frac{t-1}{t-1}. Multiply \frac{1}{\left(t-1\right)\left(-t-1\right)} times \frac{-\left(t+1\right)}{-\left(t+1\right)}.
\frac{t-1-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}}
Since \frac{t-1}{\left(t-1\right)\left(t+1\right)^{2}} and \frac{-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{t-1-t-1}{\left(t-1\right)\left(t+1\right)^{2}}
Do the multiplications in t-1-\left(t+1\right).
\frac{-2}{\left(t-1\right)\left(t+1\right)^{2}}
Combine like terms in t-1-t-1.
\frac{-2}{t^{3}+t^{2}-t-1}
Expand \left(t-1\right)\left(t+1\right)^{2}.
\frac{1}{\left(1+t\right)^{2}}+\frac{1}{\left(t-1\right)\left(-t-1\right)}
Factor 1-t^{2}.
\frac{t-1}{\left(t-1\right)\left(t+1\right)^{2}}+\frac{-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(1+t\right)^{2} and \left(t-1\right)\left(-t-1\right) is \left(t-1\right)\left(t+1\right)^{2}. Multiply \frac{1}{\left(1+t\right)^{2}} times \frac{t-1}{t-1}. Multiply \frac{1}{\left(t-1\right)\left(-t-1\right)} times \frac{-\left(t+1\right)}{-\left(t+1\right)}.
\frac{t-1-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}}
Since \frac{t-1}{\left(t-1\right)\left(t+1\right)^{2}} and \frac{-\left(t+1\right)}{\left(t-1\right)\left(t+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{t-1-t-1}{\left(t-1\right)\left(t+1\right)^{2}}
Do the multiplications in t-1-\left(t+1\right).
\frac{-2}{\left(t-1\right)\left(t+1\right)^{2}}
Combine like terms in t-1-t-1.
\frac{-2}{t^{3}+t^{2}-t-1}
Expand \left(t-1\right)\left(t+1\right)^{2}.