Evaluate
\frac{35\left(\sqrt{273}+1\right)}{408}\approx 1.503173793
Factor
\frac{35 {(\sqrt{273} + 1)}}{408} = 1.5031737928064721
Share
Copied to clipboard
\frac{1}{\frac{3\sqrt{3}\sqrt{91}}{7\times 10}-\left(-\frac{1}{7}\left(-\frac{3}{10}\right)\right)}
Multiply \frac{3\sqrt{3}}{7} times \frac{\sqrt{91}}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{\frac{3\sqrt{3}\sqrt{91}}{7\times 10}-\frac{-\left(-3\right)}{7\times 10}}
Multiply -\frac{1}{7} times -\frac{3}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{\frac{3\sqrt{3}\sqrt{91}}{7\times 10}-\frac{3}{70}}
Do the multiplications in the fraction \frac{-\left(-3\right)}{7\times 10}.
\frac{1}{\frac{3\sqrt{3}\sqrt{91}}{70}-\frac{3}{70}}
To add or subtract expressions, expand them to make their denominators the same. Expand 7\times 10.
\frac{1}{\frac{3\sqrt{3}\sqrt{91}-3}{70}}
Since \frac{3\sqrt{3}\sqrt{91}}{70} and \frac{3}{70} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{\frac{3\sqrt{273}-3}{70}}
Do the multiplications in 3\sqrt{3}\sqrt{91}-3.
\frac{70}{3\sqrt{273}-3}
Divide 1 by \frac{3\sqrt{273}-3}{70} by multiplying 1 by the reciprocal of \frac{3\sqrt{273}-3}{70}.
\frac{70\left(3\sqrt{273}+3\right)}{\left(3\sqrt{273}-3\right)\left(3\sqrt{273}+3\right)}
Rationalize the denominator of \frac{70}{3\sqrt{273}-3} by multiplying numerator and denominator by 3\sqrt{273}+3.
\frac{70\left(3\sqrt{273}+3\right)}{\left(3\sqrt{273}\right)^{2}-3^{2}}
Consider \left(3\sqrt{273}-3\right)\left(3\sqrt{273}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{70\left(3\sqrt{273}+3\right)}{3^{2}\left(\sqrt{273}\right)^{2}-3^{2}}
Expand \left(3\sqrt{273}\right)^{2}.
\frac{70\left(3\sqrt{273}+3\right)}{9\left(\sqrt{273}\right)^{2}-3^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{70\left(3\sqrt{273}+3\right)}{9\times 273-3^{2}}
The square of \sqrt{273} is 273.
\frac{70\left(3\sqrt{273}+3\right)}{2457-3^{2}}
Multiply 9 and 273 to get 2457.
\frac{70\left(3\sqrt{273}+3\right)}{2457-9}
Calculate 3 to the power of 2 and get 9.
\frac{70\left(3\sqrt{273}+3\right)}{2448}
Subtract 9 from 2457 to get 2448.
\frac{35}{1224}\left(3\sqrt{273}+3\right)
Divide 70\left(3\sqrt{273}+3\right) by 2448 to get \frac{35}{1224}\left(3\sqrt{273}+3\right).
\frac{35}{1224}\times 3\sqrt{273}+\frac{35}{1224}\times 3
Use the distributive property to multiply \frac{35}{1224} by 3\sqrt{273}+3.
\frac{35\times 3}{1224}\sqrt{273}+\frac{35}{1224}\times 3
Express \frac{35}{1224}\times 3 as a single fraction.
\frac{105}{1224}\sqrt{273}+\frac{35}{1224}\times 3
Multiply 35 and 3 to get 105.
\frac{35}{408}\sqrt{273}+\frac{35}{1224}\times 3
Reduce the fraction \frac{105}{1224} to lowest terms by extracting and canceling out 3.
\frac{35}{408}\sqrt{273}+\frac{35\times 3}{1224}
Express \frac{35}{1224}\times 3 as a single fraction.
\frac{35}{408}\sqrt{273}+\frac{105}{1224}
Multiply 35 and 3 to get 105.
\frac{35}{408}\sqrt{273}+\frac{35}{408}
Reduce the fraction \frac{105}{1224} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}