Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{7}+\sqrt{6}}{\left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right)}
Rationalize the denominator of \frac{1}{\sqrt{7}-\sqrt{6}} by multiplying numerator and denominator by \sqrt{7}+\sqrt{6}.
\frac{\sqrt{7}+\sqrt{6}}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(\sqrt{7}-\sqrt{6}\right)\left(\sqrt{7}+\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{7}+\sqrt{6}}{7-6}
Square \sqrt{7}. Square \sqrt{6}.
\frac{\sqrt{7}+\sqrt{6}}{1}
Subtract 6 from 7 to get 1.
\sqrt{7}+\sqrt{6}
Anything divided by one gives itself.