Evaluate
-\frac{5\sqrt{3}}{6}+\sqrt{6}\approx 1.00611407
Share
Copied to clipboard
\frac{\sqrt{6}-\sqrt{5}}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}+\frac{1}{\sqrt{5}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{3}}
Rationalize the denominator of \frac{1}{\sqrt{6}+\sqrt{5}} by multiplying numerator and denominator by \sqrt{6}-\sqrt{5}.
\frac{\sqrt{6}-\sqrt{5}}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{5}\right)^{2}}+\frac{1}{\sqrt{5}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{3}}
Consider \left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{6}-\sqrt{5}}{6-5}+\frac{1}{\sqrt{5}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{3}}
Square \sqrt{6}. Square \sqrt{5}.
\frac{\sqrt{6}-\sqrt{5}}{1}+\frac{1}{\sqrt{5}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{3}}
Subtract 5 from 6 to get 1.
\sqrt{6}-\sqrt{5}+\frac{1}{\sqrt{5}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{3}}
Anything divided by one gives itself.
\sqrt{6}-\sqrt{5}+\frac{1}{\sqrt{5}+2}+\frac{1}{\sqrt{4}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{3}}
Calculate the square root of 4 and get 2.
\sqrt{6}-\sqrt{5}+\frac{\sqrt{5}-2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}+\frac{1}{\sqrt{4}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{3}}
Rationalize the denominator of \frac{1}{\sqrt{5}+2} by multiplying numerator and denominator by \sqrt{5}-2.
\sqrt{6}-\sqrt{5}+\frac{\sqrt{5}-2}{\left(\sqrt{5}\right)^{2}-2^{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{3}}
Consider \left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{6}-\sqrt{5}+\frac{\sqrt{5}-2}{5-4}+\frac{1}{\sqrt{4}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{3}}
Square \sqrt{5}. Square 2.
\sqrt{6}-\sqrt{5}+\frac{\sqrt{5}-2}{1}+\frac{1}{\sqrt{4}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{3}}
Subtract 4 from 5 to get 1.
\sqrt{6}-\sqrt{5}+\sqrt{5}-2+\frac{1}{\sqrt{4}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{3}}
Anything divided by one gives itself.
\sqrt{6}-2+\frac{1}{\sqrt{4}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{3}}
Combine -\sqrt{5} and \sqrt{5} to get 0.
\sqrt{6}-2+\frac{1}{2+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{3}}
Calculate the square root of 4 and get 2.
\sqrt{6}-2+\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+\frac{1}{\sqrt{3}+\sqrt{3}}
Rationalize the denominator of \frac{1}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\sqrt{6}-2+\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{6}-2+\frac{2-\sqrt{3}}{4-3}+\frac{1}{\sqrt{3}+\sqrt{3}}
Square 2. Square \sqrt{3}.
\sqrt{6}-2+\frac{2-\sqrt{3}}{1}+\frac{1}{\sqrt{3}+\sqrt{3}}
Subtract 3 from 4 to get 1.
\sqrt{6}-2+2-\sqrt{3}+\frac{1}{\sqrt{3}+\sqrt{3}}
Anything divided by one gives itself.
\sqrt{6}-\sqrt{3}+\frac{1}{\sqrt{3}+\sqrt{3}}
Add -2 and 2 to get 0.
\sqrt{6}-\sqrt{3}+\frac{1}{2\sqrt{3}}
Combine \sqrt{3} and \sqrt{3} to get 2\sqrt{3}.
\sqrt{6}-\sqrt{3}+\frac{\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{1}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\sqrt{6}-\sqrt{3}+\frac{\sqrt{3}}{2\times 3}
The square of \sqrt{3} is 3.
\sqrt{6}-\sqrt{3}+\frac{\sqrt{3}}{6}
Multiply 2 and 3 to get 6.
\sqrt{6}-\frac{5}{6}\sqrt{3}
Combine -\sqrt{3} and \frac{\sqrt{3}}{6} to get -\frac{5}{6}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}