Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{6}-\sqrt{3}}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{\sqrt{6}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{6}-\sqrt{3}.
\frac{\sqrt{6}-\sqrt{3}}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{6}-\sqrt{3}}{6-3}
Square \sqrt{6}. Square \sqrt{3}.
\frac{\sqrt{6}-\sqrt{3}}{3}
Subtract 3 from 6 to get 3.