Evaluate
\frac{\sqrt{2}\left(6\epsilon +1\right)}{10}
Factor
\frac{\sqrt{2}\left(6\epsilon +1\right)}{10}
Share
Copied to clipboard
\frac{1}{5\sqrt{2}}+\frac{6}{\sqrt{50}}\epsilon
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{\sqrt{2}}{5\left(\sqrt{2}\right)^{2}}+\frac{6}{\sqrt{50}}\epsilon
Rationalize the denominator of \frac{1}{5\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{2}}{5\times 2}+\frac{6}{\sqrt{50}}\epsilon
The square of \sqrt{2} is 2.
\frac{\sqrt{2}}{10}+\frac{6}{\sqrt{50}}\epsilon
Multiply 5 and 2 to get 10.
\frac{\sqrt{2}}{10}+\frac{6}{5\sqrt{2}}\epsilon
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{\sqrt{2}}{10}+\frac{6\sqrt{2}}{5\left(\sqrt{2}\right)^{2}}\epsilon
Rationalize the denominator of \frac{6}{5\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{2}}{10}+\frac{6\sqrt{2}}{5\times 2}\epsilon
The square of \sqrt{2} is 2.
\frac{\sqrt{2}}{10}+\frac{3\sqrt{2}}{5}\epsilon
Cancel out 2 in both numerator and denominator.
\frac{\sqrt{2}}{10}+\frac{3\sqrt{2}\epsilon }{5}
Express \frac{3\sqrt{2}}{5}\epsilon as a single fraction.
\frac{\sqrt{2}}{10}+\frac{2\times 3\sqrt{2}\epsilon }{10}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 10 and 5 is 10. Multiply \frac{3\sqrt{2}\epsilon }{5} times \frac{2}{2}.
\frac{\sqrt{2}+2\times 3\sqrt{2}\epsilon }{10}
Since \frac{\sqrt{2}}{10} and \frac{2\times 3\sqrt{2}\epsilon }{10} have the same denominator, add them by adding their numerators.
\frac{\sqrt{2}+6\sqrt{2}\epsilon }{10}
Do the multiplications in \sqrt{2}+2\times 3\sqrt{2}\epsilon .
factor(\frac{1}{5\sqrt{2}}+\frac{6}{\sqrt{50}}\epsilon )
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
factor(\frac{\sqrt{2}}{5\left(\sqrt{2}\right)^{2}}+\frac{6}{\sqrt{50}}\epsilon )
Rationalize the denominator of \frac{1}{5\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
factor(\frac{\sqrt{2}}{5\times 2}+\frac{6}{\sqrt{50}}\epsilon )
The square of \sqrt{2} is 2.
factor(\frac{\sqrt{2}}{10}+\frac{6}{\sqrt{50}}\epsilon )
Multiply 5 and 2 to get 10.
factor(\frac{\sqrt{2}}{10}+\frac{6}{5\sqrt{2}}\epsilon )
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
factor(\frac{\sqrt{2}}{10}+\frac{6\sqrt{2}}{5\left(\sqrt{2}\right)^{2}}\epsilon )
Rationalize the denominator of \frac{6}{5\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
factor(\frac{\sqrt{2}}{10}+\frac{6\sqrt{2}}{5\times 2}\epsilon )
The square of \sqrt{2} is 2.
factor(\frac{\sqrt{2}}{10}+\frac{3\sqrt{2}}{5}\epsilon )
Cancel out 2 in both numerator and denominator.
factor(\frac{\sqrt{2}}{10}+\frac{3\sqrt{2}\epsilon }{5})
Express \frac{3\sqrt{2}}{5}\epsilon as a single fraction.
factor(\frac{\sqrt{2}}{10}+\frac{2\times 3\sqrt{2}\epsilon }{10})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 10 and 5 is 10. Multiply \frac{3\sqrt{2}\epsilon }{5} times \frac{2}{2}.
factor(\frac{\sqrt{2}+2\times 3\sqrt{2}\epsilon }{10})
Since \frac{\sqrt{2}}{10} and \frac{2\times 3\sqrt{2}\epsilon }{10} have the same denominator, add them by adding their numerators.
factor(\frac{\sqrt{2}+6\sqrt{2}\epsilon }{10})
Do the multiplications in \sqrt{2}+2\times 3\sqrt{2}\epsilon .
\sqrt{2}\left(1+6\epsilon \right)
Consider \sqrt{2}+6\sqrt{2}\epsilon . Factor out \sqrt{2}.
\frac{\left(6\epsilon +1\right)\sqrt{2}}{10}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}