Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}+2\sqrt{6}}{\left(\sqrt{5}-2\sqrt{6}\right)\left(\sqrt{5}+2\sqrt{6}\right)}
Rationalize the denominator of \frac{1}{\sqrt{5}-2\sqrt{6}} by multiplying numerator and denominator by \sqrt{5}+2\sqrt{6}.
\frac{\sqrt{5}+2\sqrt{6}}{\left(\sqrt{5}\right)^{2}-\left(-2\sqrt{6}\right)^{2}}
Consider \left(\sqrt{5}-2\sqrt{6}\right)\left(\sqrt{5}+2\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{5}+2\sqrt{6}}{5-\left(-2\sqrt{6}\right)^{2}}
The square of \sqrt{5} is 5.
\frac{\sqrt{5}+2\sqrt{6}}{5-\left(-2\right)^{2}\left(\sqrt{6}\right)^{2}}
Expand \left(-2\sqrt{6}\right)^{2}.
\frac{\sqrt{5}+2\sqrt{6}}{5-4\left(\sqrt{6}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{\sqrt{5}+2\sqrt{6}}{5-4\times 6}
The square of \sqrt{6} is 6.
\frac{\sqrt{5}+2\sqrt{6}}{5-24}
Multiply 4 and 6 to get 24.
\frac{\sqrt{5}+2\sqrt{6}}{-19}
Subtract 24 from 5 to get -19.
\frac{-\sqrt{5}-2\sqrt{6}}{19}
Multiply both numerator and denominator by -1.