Solve for x
x = \frac{25 - 5 \sqrt{5}}{8} \approx 1.727457514
Graph
Share
Copied to clipboard
\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}x-\frac{1}{2}\left(3-2x\right)=1
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\sqrt{5}}{5}x-\frac{1}{2}\left(3-2x\right)=1
The square of \sqrt{5} is 5.
\frac{\sqrt{5}x}{5}-\frac{1}{2}\left(3-2x\right)=1
Express \frac{\sqrt{5}}{5}x as a single fraction.
\frac{\sqrt{5}x}{5}-\frac{1}{2}\times 3-\frac{1}{2}\left(-2\right)x=1
Use the distributive property to multiply -\frac{1}{2} by 3-2x.
\frac{\sqrt{5}x}{5}+\frac{-3}{2}-\frac{1}{2}\left(-2\right)x=1
Express -\frac{1}{2}\times 3 as a single fraction.
\frac{\sqrt{5}x}{5}-\frac{3}{2}-\frac{1}{2}\left(-2\right)x=1
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{\sqrt{5}x}{5}-\frac{3}{2}+\frac{-\left(-2\right)}{2}x=1
Express -\frac{1}{2}\left(-2\right) as a single fraction.
\frac{\sqrt{5}x}{5}-\frac{3}{2}+\frac{2}{2}x=1
Multiply -1 and -2 to get 2.
\frac{\sqrt{5}x}{5}-\frac{3}{2}+1x=1
Divide 2 by 2 to get 1.
\frac{2\sqrt{5}x}{10}-\frac{3\times 5}{10}+1x=1
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 2 is 10. Multiply \frac{\sqrt{5}x}{5} times \frac{2}{2}. Multiply \frac{3}{2} times \frac{5}{5}.
\frac{2\sqrt{5}x-3\times 5}{10}+1x=1
Since \frac{2\sqrt{5}x}{10} and \frac{3\times 5}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{2\sqrt{5}x-15}{10}+1x=1
Do the multiplications in 2\sqrt{5}x-3\times 5.
2\sqrt{5}x-15+10x=10
Multiply both sides of the equation by 10.
2\sqrt{5}x+10x-15=10
Reorder the terms.
2\sqrt{5}x+10x=10+15
Add 15 to both sides.
2\sqrt{5}x+10x=25
Add 10 and 15 to get 25.
\left(2\sqrt{5}+10\right)x=25
Combine all terms containing x.
\frac{\left(2\sqrt{5}+10\right)x}{2\sqrt{5}+10}=\frac{25}{2\sqrt{5}+10}
Divide both sides by 2\sqrt{5}+10.
x=\frac{25}{2\sqrt{5}+10}
Dividing by 2\sqrt{5}+10 undoes the multiplication by 2\sqrt{5}+10.
x=\frac{25-5\sqrt{5}}{8}
Divide 25 by 2\sqrt{5}+10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}