Evaluate
\frac{5}{11}\approx 0.454545455
Factor
\frac{5}{11} = 0.45454545454545453
Quiz
Arithmetic
5 problems similar to:
\frac { 1 } { \sqrt { 3 } + 5 } - \frac { 1 } { \sqrt { 3 } - 5 }
Share
Copied to clipboard
\frac{\sqrt{3}-5}{\left(\sqrt{3}+5\right)\left(\sqrt{3}-5\right)}-\frac{1}{\sqrt{3}-5}
Rationalize the denominator of \frac{1}{\sqrt{3}+5} by multiplying numerator and denominator by \sqrt{3}-5.
\frac{\sqrt{3}-5}{\left(\sqrt{3}\right)^{2}-5^{2}}-\frac{1}{\sqrt{3}-5}
Consider \left(\sqrt{3}+5\right)\left(\sqrt{3}-5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}-5}{3-25}-\frac{1}{\sqrt{3}-5}
Square \sqrt{3}. Square 5.
\frac{\sqrt{3}-5}{-22}-\frac{1}{\sqrt{3}-5}
Subtract 25 from 3 to get -22.
\frac{-\sqrt{3}+5}{22}-\frac{1}{\sqrt{3}-5}
Multiply both numerator and denominator by -1.
\frac{-\sqrt{3}+5}{22}-\frac{\sqrt{3}+5}{\left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right)}
Rationalize the denominator of \frac{1}{\sqrt{3}-5} by multiplying numerator and denominator by \sqrt{3}+5.
\frac{-\sqrt{3}+5}{22}-\frac{\sqrt{3}+5}{\left(\sqrt{3}\right)^{2}-5^{2}}
Consider \left(\sqrt{3}-5\right)\left(\sqrt{3}+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-\sqrt{3}+5}{22}-\frac{\sqrt{3}+5}{3-25}
Square \sqrt{3}. Square 5.
\frac{-\sqrt{3}+5}{22}-\frac{\sqrt{3}+5}{-22}
Subtract 25 from 3 to get -22.
\frac{-\sqrt{3}+5}{22}-\frac{-\sqrt{3}-5}{22}
Multiply both numerator and denominator by -1.
\frac{-\sqrt{3}+5-\left(-\sqrt{3}-5\right)}{22}
Since \frac{-\sqrt{3}+5}{22} and \frac{-\sqrt{3}-5}{22} have the same denominator, subtract them by subtracting their numerators.
\frac{-\sqrt{3}+5+\sqrt{3}+5}{22}
Do the multiplications in -\sqrt{3}+5-\left(-\sqrt{3}-5\right).
\frac{10}{22}
Do the calculations in -\sqrt{3}+5+\sqrt{3}+5.
\frac{5}{11}
Reduce the fraction \frac{10}{22} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}